生物炭
堆肥
微生物种群生物学
营养物
土壤肥力
营养循环
肥料
鸡粪
环境科学
农学
土壤改良剂
土壤碳
磷
有机质
生物肥料
土壤有机质
矿化(土壤科学)
生态系统
分解者
微生物
化学
农业
废弃物
土壤质量
修正案
固碳
肥料
可持续农业
作物残渣
土壤生态学
土壤食物网
食物垃圾
作者
Longjun Chen,Haitao Fan,Lulong Zhong,Yuncai Wang,Chen Cheng,Xin Chen,Yanping Chen,Jiao‐Lin Zhang,Yu Lin
标识
DOI:10.1007/s42729-025-02785-2
摘要
Abstract This study elucidates the synergistic regulatory mechanisms of biochar-amended chicken manure and mushroom residue compost (BCM) on soil microbial communities and nutrient cycling in the extra-rhizosphere, while evaluating its potential for sustainable agricultural waste recycling. Methods: We conducted a 50-day composting trial using five biochar application rates (0–7%). Assessed parameters included compost maturity (C/N ratio), nutrient content (NO 3 − -N, available phosphorus [AP], soil organic matter [SOM]), phosphatase and catalase activities, microbial community composition, and metabolic pathways. We performed Redundancy analysis (RDA) to correlate SOM/AP dynamics with microbial diversity and functional pathways. Results: At 5–7% biochar, compost maturity improved significantly, with C/N ratios of 15.6–18.2 and 2.2-4.0-fold increases in NO 3 − -N (1.41 mg/g), AP (50.09 mg/kg), and SOM (166.11 g/kg). Enzymatic activities (phosphatase: 9.81 mg/g·24 h; catalase: 83.08 µmol/g·24 h) correlated strongly with SOM/AP (R 2 = 0.71–0.82). Biochar enriched Proteobacteria (34.1%) and Actinobacteriota (15.2%), suppressed Halophiles ( Halomonas reduced by 52%), and enhanced carbon metabolism and oxidative phosphorylation pathways. RDA identified SOM/AP as a key driver of microbial diversity (R 2 = 0.91). The 5% biochar dose optimized nutrient retention (37–59% increases in AP, Available potassium [AK], NO 3 − -N) while maintaining microbial diversity, outperforming higher doses. Conclusions: This study demonstrates biochar’s dual role in reshaping extra-rhizosphere microbial ecology and nutrient dynamics, offering a precision agriculture strategy for sustainable waste recycling and circular economy practices. The 5% biochar dosage proved optimal, enhancing nutrient cycling and microbial activity while mitigating halophilic microbial suppression. Graphical Abstract
科研通智能强力驱动
Strongly Powered by AbleSci AI