PIQLE: protein–protein interface quality estimation by deep graph learning of multimeric interaction geometries

计算机科学 图形 接口(物质) 机器学习 人工智能 数据挖掘 理论计算机科学 并行计算 气泡 最大气泡压力法
作者
Md Hossain Shuvo,Mohimenul Karim,Rahmatullah Roche,Debswapna Bhattacharya
出处
期刊:Bioinformatics advances [Oxford University Press]
卷期号:3 (1): vbad070-vbad070 被引量:5
标识
DOI:10.1093/bioadv/vbad070
摘要

Abstract Motivation Accurate modeling of protein–protein interaction interface is essential for high-quality protein complex structure prediction. Existing approaches for estimating the quality of a predicted protein complex structural model utilize only the physicochemical properties or energetic contributions of the interacting atoms, ignoring evolutionarily information or inter-atomic multimeric geometries, including interaction distance and orientations. Results Here, we present PIQLE, a deep graph learning method for protein–protein interface quality estimation. PIQLE leverages multimeric interaction geometries and evolutionarily information along with sequence- and structure-derived features to estimate the quality of individual interactions between the interfacial residues using a multi-head graph attention network and then probabilistically combines the estimated quality for scoring the overall interface. Experimental results show that PIQLE consistently outperforms existing state-of-the-art methods including DProQA, TRScore, GNN-DOVE and DOVE on multiple independent test datasets across a wide range of evaluation metrics. Our ablation study and comparison with the self-assessment module of AlphaFold-Multimer repurposed for protein complex scoring reveal that the performance gains are connected to the effectiveness of the multi-head graph attention network in leveraging multimeric interaction geometries and evolutionary information along with other sequence- and structure-derived features adopted in PIQLE. Availability and implementation An open-source software implementation of PIQLE is freely available at https://github.com/Bhattacharya-Lab/PIQLE. Supplementary information Supplementary data are available at Bioinformatics Advances online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老福贵儿应助卷卷采纳,获得30
刚刚
电机小学生完成签到,获得积分10
刚刚
刚刚
Hello应助2231131采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
稗子发布了新的文献求助10
1秒前
午凌二发布了新的文献求助10
2秒前
2秒前
车窗外发布了新的文献求助50
3秒前
Mico完成签到,获得积分10
3秒前
NexusExplorer应助佳佳采纳,获得10
3秒前
迎风的狗尾草完成签到,获得积分10
3秒前
4秒前
4秒前
SheltonYang发布了新的文献求助10
5秒前
田様应助Jeohurd采纳,获得10
5秒前
ysxl发布了新的文献求助10
5秒前
5秒前
hhh完成签到,获得积分10
7秒前
傻傻的语蕊关注了科研通微信公众号
7秒前
科研通AI2S应助自觉高跟鞋采纳,获得10
8秒前
袁子晴发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
9秒前
Duffy完成签到,获得积分10
9秒前
10秒前
10秒前
蓝天发布了新的文献求助10
10秒前
浮游应助柏柏采纳,获得10
10秒前
wst完成签到,获得积分10
11秒前
车窗外完成签到,获得积分10
11秒前
12秒前
为什么我不是帅哥j完成签到,获得积分10
13秒前
13秒前
拼搏的初雪完成签到,获得积分20
13秒前
SciGPT应助科研通管家采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Chemistry and Biochemistry: Research Progress Vol. 7 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5683901
求助须知:如何正确求助?哪些是违规求助? 5034192
关于积分的说明 15182838
捐赠科研通 4843305
什么是DOI,文献DOI怎么找? 2596600
邀请新用户注册赠送积分活动 1549342
关于科研通互助平台的介绍 1507823