Crop Genome Sequencing and their Application for Crop Improvement

作物 生物 生物技术 农学
作者
Hafiz Ghulam Muhu‐Din Ahmed,Yawen Zeng,Xiaomeng Yang,Noor Fatima,Anns Faisal
标识
DOI:10.1002/9781394209156.ch1
摘要

Chapter 1 Crop Genome Sequencing and their Application for Crop Improvement Hafiz Ghulam Muhu-Din Ahmed, Hafiz Ghulam Muhu-Din Ahmed Department of Plant Breeding and Genetics, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, 63100 PakistanSearch for more papers by this authorYawen Zeng, Yawen Zeng Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 ChinaSearch for more papers by this authorXiaomeng Yang, Xiaomeng Yang Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 ChinaSearch for more papers by this authorNoor Fatima, Noor Fatima Department of Plant Breeding and Genetics, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, 63100 PakistanSearch for more papers by this authorAnns Faisal, Anns Faisal Department of Plant Breeding and Genetics, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, 63100 PakistanSearch for more papers by this author Hafiz Ghulam Muhu-Din Ahmed, Hafiz Ghulam Muhu-Din Ahmed Department of Plant Breeding and Genetics, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, 63100 PakistanSearch for more papers by this authorYawen Zeng, Yawen Zeng Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 ChinaSearch for more papers by this authorXiaomeng Yang, Xiaomeng Yang Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 ChinaSearch for more papers by this authorNoor Fatima, Noor Fatima Department of Plant Breeding and Genetics, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, 63100 PakistanSearch for more papers by this authorAnns Faisal, Anns Faisal Department of Plant Breeding and Genetics, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, 63100 PakistanSearch for more papers by this author Book Editor(s):Sajid Fiaz, Sajid Fiaz University of Haripur, Haripur, PakistanSearch for more papers by this authorChannapatna S. Prakash, Channapatna S. Prakash Tuskegee University, Alabama, United StatesSearch for more papers by this author First published: 29 March 2024 https://doi.org/10.1002/9781394209156.ch1 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Crop genome sequencing involves identifying the entire DNA sequence of a specific crop plant species. This is achieved using high-throughput sequencing methods that enable rapid and precise sequencing of extensive genetic content. In this chapter, application of genome crop sequencing, its contributions toward agriculture, genome-assisted advances in different crops, methods of crop genome sequencing, genome-assisted breeding for abiotic stresses, examples of successful crop improvement through genome sequencing, and challenges and limitation of crop genome sequencing have been mentioned for the improvement of the crops. The utilization of genotyping by sequencing (GBS), an advanced high-throughput sequencing technique, has significantly extended the quantity of molecular markers applicable in the field of crop genetics. Though different breeding methods that utilize genomic technologies are employed to accelerate the breeding process and improve the efficiency of plant breeding initiatives, these approaches require a minimum of six back-crossing cycles to reduce undesirable linkages in parental plants. Possible solutions were observed for the challenges and limitations of crop genome sequencing which if approved may be useful in the future for the improvement of different crops. References Amalraj , A. , Taylor , J. , Bithell , S. et al. ( 2019 ). Mapping resistance to Phytophthora root rot identifies independent loci from cultivated (Cicer arietinum L.) and wild (Cicer echinospermum PH Davis) chickpea . Theoretical and Applied Genetics 132 : 1017 – 1033 . 10.1007/s00122-018-3256-6 CASPubMedWeb of Science®Google Scholar Arelli , P. , Young , L. , and Mengistu , A. ( 2006 ). Registration of high yielding and multiple disease-resistant soybean germplasm JTN-5503 . Crop Science 46 : 2723 . 10.2135/cropsci2005.12.0471CRG Web of Science®Google Scholar Barchi , L. , Acquadro , A. , Alonso , D. et al. ( 2019 ). Single primer enrichment technology (SPET) for high-throughput genotyping in tomato and eggplant germplasm . Frontiers in Plant Science 10 : 1005 . 10.3389/fpls.2019.01005 PubMedGoogle Scholar Bevan , M.W. , Uauy , C. , Wulff , B.B. et al. ( 2017 ). Genomic innovation for crop improvement . Nature 543 : 346 – 354 . 10.1038/nature22011 CASPubMedWeb of Science®Google Scholar Bhatta , M. , Sandro , P. , Smith , M.R. et al. ( 2021 ). Need for speed: manipulating plant growth to accelerate breeding cycles . Current Opinion in Plant Biology 60 : 101986 . 10.1016/j.pbi.2020.101986 PubMedGoogle Scholar Boopathi , N.M. and Boopathi , N.M. ( 2013 ). Marker-Assisted Selection . Springer . 10.1007/978-81-322-0958-4 Google Scholar Borlaug , N.E. ( 2000 ). Ending world hunger. The promise of biotechnology and the threat of antiscience zealotry . Plant Physiology 124 : 487 – 490 . 10.1104/pp.124.2.487 CASPubMedWeb of Science®Google Scholar Cannarozzi , G. , Plaza-Wüthrich , S. , Esfeld , K. et al. ( 2014 ). Genome and transcriptome sequencing identifies breeding targets in the orphan crop tef (Eragrostis tef) . BMC Genomics 15 : 1 – 21 . 10.1186/1471-2164-15-581 PubMedWeb of Science®Google Scholar Chen , H. , Xie , W. , He , H. et al. ( 2014 ). A high-density SNP genotyping array for rice biology and molecular breeding . Molecular Plant 7 : 541 – 553 . 10.1093/mp/sst135 CASPubMedWeb of Science®Google Scholar Choi , J.Y. , Lye , Z.N. , Groen , S.C. et al. ( 2020 ). Nanopore sequencing-based genome assembly and evolutionary genomics of circum-basmati rice . Genome Biology 21 : 1 – 27 . 10.1186/s13059-020-1938-2 Google Scholar Chu , Y. , Wu , C. , Holbrook , C. et al. ( 2011 ). Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut . The Plant Genome 4 : 110 – 117 . 10.3835/plantgenome2011.01.0001 CASWeb of Science®Google Scholar Collard , B.C. and Mackill , D.J. ( 2008 ). Marker-assisted selection: an approach for precision plant breeding in the twenty-first century . Philosophical Transactions of the Royal Society, B: Biological Sciences 363 : 557 – 572 . 10.1098/rstb.2007.2170 CASPubMedWeb of Science®Google Scholar Croser , J.S. , Pazos-Navarro , M. , Bennett , R.G. et al. ( 2016 ). Time to flowering of temperate pulses in vivo and generation turnover in vivo–in vitro of narrow-leaf lupin accelerated by low red to far-red ratio and high intensity in the far-red region . Plant Cell Tissue and Organ Culture (PCTOC) 127 : 591 – 599 . 10.1007/s11240-016-1092-4 CASWeb of Science®Google Scholar Dempewolf , H. , Baute , G. , Anderson , J. et al. ( 2017 ). Past and future use of wild relatives in crop breeding . Crop Science 57 : 1070 – 1082 . 10.2135/cropsci2016.10.0885 Web of Science®Google Scholar Devran , Z. , Kahveci , E. , Özkaynak , E. et al. ( 2015 ). Development of molecular markers tightly linked to Pvr4 gene in pepper using next-generation sequencing . Molecular Breeding 35 : 1 – 9 . 10.1007/s11032-015-0294-5 CASGoogle Scholar Dixit , S. , Yadaw , R.B. , Mishra , K.K. , and Kumar , A. ( 2017 ). Marker-assisted breeding to develop the drought-tolerant version of Sabitri, a popular variety from Nepal . Euphytica 213 : 1 – 16 . 10.1007/s10681-017-1976-3 Web of Science®Google Scholar Dixon , L.E. , Greenwood , J.R. , Bencivenga , S. et al. ( 2018 ). TEOSINTE BRANCHED1 regulates inflorescence architecture and development in bread wheat (Triticum aestivum) . The Plant Cell 30 : 563 – 581 . 10.1105/tpc.17.00961 CASPubMedWeb of Science®Google Scholar Ellur , R.K. , Khanna , A. , Yadav , A. et al. ( 2016 ). Improvement of Basmati rice varieties for resistance to blast and bacterial blight diseases using marker assisted backcross breeding . Plant Science 242 : 330 – 341 . 10.1016/j.plantsci.2015.08.020 CASPubMedWeb of Science®Google Scholar Elshire , R.J. , Glaubitz , J.C. , Sun , Q. et al. ( 2011 ). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species . PLoS One 6 : e19379 . 10.1371/journal.pone.0019379 CASPubMedWeb of Science®Google Scholar Esposito , S. , Carputo , D. , Cardi , T. , and Tripodi , P. ( 2019 ). Applications and trends of machine learning in genomics and phenomics for next-generation breeding . Plants 9 : 34 . 10.3390/plants9010034 Google Scholar Fan , C. , Xing , Y. , Mao , H. et al. ( 2006 ). GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein . Theoretical and Applied Genetics 112 : 1164 – 1171 . 10.1007/s00122-006-0218-1 CASPubMedWeb of Science®Google Scholar Ghosh , S. , Watson , A. , Gonzalez-Navarro , O.E. et al. ( 2018 ). Speed breeding in growth chambers and glasshouses for crop breeding and model plant research . Nature Protocols 13 : 2944 – 2963 . 10.1038/s41596-018-0072-z CASPubMedWeb of Science®Google Scholar Goff , S.A. , Ricke , D. , Lan , T.-H. et al. ( 2002 ). A draft sequence of the rice genome (Oryza sativa L. ssp. japonica) . Science 296 : 92 – 100 . 10.1126/science.1068275 CASPubMedWeb of Science®Google Scholar He , J. , Zhao , X. , Laroche , A. et al. ( 2014 ). Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding . Frontiers in Plant Science 5 : 484 . 10.3389/fpls.2014.00484 PubMedWeb of Science®Google Scholar Hickey , J.M. , Chiurugwi , T. , Mackay , I. , and Powell , W. ( 2017 ). Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery . Nature Genetics 49 : 1297 – 1303 . 10.1038/ng.3920 CASPubMedWeb of Science®Google Scholar Hospital , F. and Charcosset , A. ( 1997 ). Marker-assisted introgression of quantitative trait loci . Genetics 147 : 1469 – 1485 . 10.1093/genetics/147.3.1469 CASPubMedWeb of Science®Google Scholar Hu , J. , Xiao , C. , and He , Y. ( 2016 ). Recent progress on the genetics and molecular breeding of brown planthopper resistance in rice . Rice 9 : 1 – 12 . 10.1186/s12284-016-0099-0 CASPubMedGoogle Scholar Huang , B.E. , George , A.W. , Forrest , K.L. et al. ( 2012a ). A multiparent advanced generation inter-cross population for genetic analysis in wheat . Plant Biotechnology Journal 10 : 826 – 839 . 10.1111/j.1467-7652.2012.00702.x CASPubMedWeb of Science®Google Scholar Huang , X. , Kurata , N. , Wei , X. et al. ( 2012b ). A map of rice genome variation reveals the origin of cultivated rice . Nature 490 : 497 – 501 . 10.1038/nature11532 CASPubMedWeb of Science®Google Scholar International Wheat Genome Sequencing Consortium , Mayer , K.F. , Rogers , J. et al. ( 2014 ). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome . Science 345 : 1251788 . Google Scholar Jähne , F. , Hahn , V. , Würschum , T. , and Leiser , W.L. ( 2020 ). Speed breeding short-day crops by LED-controlled light schemes . Theoretical and Applied Genetics 133 : 2335 – 2342 . 10.1007/s00122-020-03601-4 PubMedWeb of Science®Google Scholar Jewel , Z.A. , Ali , J. , Mahender , A. et al. ( 2019 ). Identification of quantitative trait loci associated with nutrient use efficiency traits, using SNP markers in an early backcross population of rice (Oryza sativa L.) . International Journal of Molecular Sciences 20 : 900 . 10.3390/ijms20040900 CASPubMedWeb of Science®Google Scholar Keating , B.A. , Herrero , M. , Carberry , P.S. et al. ( 2014 ). Food wedges: framing the global food demand and supply challenge towards 2050 . Global Food Security 3 : 125 – 132 . 10.1016/j.gfs.2014.08.004 PubMedWeb of Science®Google Scholar Kover , P.X. , Valdar , W. , Trakalo , J. et al. ( 2009 ). A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana . PLoS Genetics 5 : e1000551 . 10.1371/journal.pgen.1000551 PubMedWeb of Science®Google Scholar Kumar , S. , Banks , T.W. , and Cloutier , S. ( 2012 ). SNP discovery through next-generation sequencing and its applications . International Journal of Plant Genomics 2012 : 1 – 15 . 10.1155/2012/831460 CASGoogle Scholar Kuraparthy , V. , Sood , S. , See , D.R. , and Gill , B.S. ( 2009 ). Development of a PCR assay and marker-assisted transfer of leaf rust and stripe rust resistance genes Lr57 and Yr40 into hard red winter wheats . Crop Science 49 : 120 – 126 . 10.2135/cropsci2008.03.0143 CASWeb of Science®Google Scholar Lam , H.-M. , Xu , X. , Liu , X. et al. ( 2010 ). Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection . Nature Genetics 42 : 1053 – 1059 . 10.1038/ng.715 CASPubMedWeb of Science®Google Scholar Lang , N.T. , Tao , N. , and Buu , B.C. ( 2011 ). Marker-assisted backcrossing (MAB) for rice submergence tolerance in Mekong delta . Omonrice 18 : 11 – 21 . Google Scholar Lau , W.C. , Rafii , M.Y. , Ismail , M.R. et al. ( 2015 ). Review of functional markers for improving cooking, eating, and the nutritional qualities of rice . Frontiers in Plant Science 6 : 832 . 10.3389/fpls.2015.00832 PubMedWeb of Science®Google Scholar Liu , W. , Maccaferri , M. , Bulli , P. et al. ( 2017 ). Genome-wide association mapping for seedling and field resistance to Puccinia striiformis f. sp. tritici in elite durum wheat . Theoretical and Applied Genetics 130 : 649 – 667 . 10.1007/s00122-016-2841-9 PubMedWeb of Science®Google Scholar Lobet , G. ( 2017 ). Image analysis in plant sciences: publish then perish . Trends in Plant Science 22 : 559 – 566 . 10.1016/j.tplants.2017.05.002 CASPubMedWeb of Science®Google Scholar Lusser , M. , Parisi , C. , Plan , D. , and Rodríguez-Cerezo , E. ( 2012 ). Deployment of new biotechnologies in plant breeding . Nature Biotechnology 30 : 231 – 239 . 10.1038/nbt.2142 CASPubMedWeb of Science®Google Scholar Mao , H. , Sun , S. , Yao , J. et al. ( 2010 ). Linking differential domain functions of the GS3 protein to natural variation of grain size in rice . Proceedings of the National Academy of Sciences 107 : 19579 – 19584 . 10.1073/pnas.1014419107 CASPubMedWeb of Science®Google Scholar Massa , A.N. , Childs , K.L. , Lin , H. et al. ( 2011 ). The transcriptome of the reference potato genome Solanum tuberosum Group Phureja clone DM1-3 516R44 . PLoS One 6 : e26801 . 10.1371/journal.pone.0026801 PubMedGoogle Scholar Mayer , K. , Waugh , R. , Langridge , P. et al. ( 2012 ). A physical, genetic and functional sequence assembly of the barley genome . Nature 491 : 711 – 716 . 10.1038/nature11543 CASPubMedWeb of Science®Google Scholar Michael , T.P. and VanBuren , R. ( 2020 ). Building near-complete plant genomes . Current Opinion in Plant Biology 54 : 26 – 33 . 10.1016/j.pbi.2019.12.009 CASPubMedWeb of Science®Google Scholar Milner , S.G. , Maccaferri , M. , Huang , B.E. et al. ( 2016 ). A multiparental cross population for mapping QTL for agronomic traits in durum wheat (T riticum turgidum ssp. durum) . Plant Biotechnology Journal 14 : 735 – 748 . 10.1111/pbi.12424 CASPubMedWeb of Science®Google Scholar Mitrofanova , O. and Khakimova , A. ( 2017 ). New genetic resources in wheat breeding for increased grain protein content . Russian Journal of Genetics: Applied Research 7 : 477 – 487 . 10.1134/S2079059717040062 Google Scholar Neeraja , C.N. , Maghirang-Rodriguez , R. , Pamplona , A. et al. ( 2007 ). A marker-assisted backcross approach for developing submergence-tolerant rice cultivars . Theoretical and Applied Genetics 115 : 767 – 776 . 10.1007/s00122-007-0607-0 CASPubMedWeb of Science®Google Scholar Pandey , M.K. , Roorkiwal , M. , Singh , V.K. et al. ( 2016 ). Emerging genomic tools for legume breeding: current status and future prospects . Frontiers in Plant Science 7 : 455 . 10.3389/fpls.2016.00455 PubMedWeb of Science®Google Scholar Pandey , M.K. , Khan , A.W. , Singh , V.K. et al. ( 2017 ). QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.) . Plant Biotechnology Journal 15 : 927 – 941 . 10.1111/pbi.12686 CASPubMedWeb of Science®Google Scholar Parida , S.K. , Mukerji , M. , Singh , A.K. et al. ( 2012 ). SNPs in stress-responsive rice genes: validation, genotyping, functional relevance and population structure . BMC Genomics 13 : 1 – 17 . 10.1186/1471-2164-13-426 PubMedWeb of Science®Google Scholar Parisi , C. , Tillie , P. , and Rodríguez-Cerezo , E. ( 2016 ). The global pipeline of GM crops out to 2020 . Nature Biotechnology 34 : 31 – 36 . 10.1038/nbt.3449 CASPubMedWeb of Science®Google Scholar Poland , J.A. and Rife , T.W. ( 2012 ). Genotyping-by-sequencing for plant breeding and genetics . The Plant Genome 5 : 92 – 102 . 10.3835/plantgenome2012.05.0005 CASWeb of Science®Google Scholar Rai , K. , Hash , C. , Singh , A.K. , and Velu , G. ( 2008 ). Adaptation and quality traits of a germplasm-derived commercial seed parent of pearl millet . Plant Genetic Resources Newsletter 154 : 20 – 24 . Google Scholar Ratna Madhavi , K. , Rambabu , R. , Abhilash Kumar , V. et al. ( 2016 ). Marker assisted introgression of blast (Pi-2 and Pi-54) genes in to the genetic background of elite, bacterial blight resistant indica rice variety, Improved Samba Mahsuri . Euphytica 212 : 331 – 342 . 10.1007/s10681-016-1784-1 CASGoogle Scholar Ray , D.K. , Mueller , N.D. , West , P.C. , and Foley , J.A. ( 2013 ). Yield trends are insufficient to double global crop production by 2050 . PLoS One 8 : e66428 . 10.1371/journal.pone.0066428 CASWeb of Science®Google Scholar Rodriguez , M. , Scintu , A. , Posadinu , C.M. et al. ( 2020 ). GWAS based on RNA-Seq SNPs and high-throughput phenotyping combined with climatic data highlights the reservoir of valuable genetic diversity in regional tomato landraces . Genes 11 : 1387 . 10.3390/genes11111387 CASPubMedGoogle Scholar Rosas , H. , Wilkens , P. , Salat , D. et al. ( 2018 ). Complex spatial and temporally defined myelin and axonal degeneration in Huntington disease . NeuroImage: Clinical 20 : 236 – 242 . 10.1016/j.nicl.2018.01.029 CASPubMedWeb of Science®Google Scholar Saintenac , C. , Lee , W.-S. , Cambon , F. et al. ( 2018 ). Wheat receptor-kinase-like protein Stb6 controls gene-for-gene resistance to fungal pathogen Zymoseptoria tritici . Nature Genetics 50 : 368 – 374 . 10.1038/s41588-018-0051-x CASPubMedWeb of Science®Google Scholar Schmutz , J. , Cannon , S.B. , Schlueter , J. et al. ( 2010 ). Genome sequence of the palaeopolyploid soybean . Nature 463 : 178 – 183 . 10.1038/nature08670 CASPubMedWeb of Science®Google Scholar Schnable , P.S. , Ware , D. , Fulton , R.S. et al. ( 2009 ). The B73 maize genome: complexity, diversity, and dynamics . Science 326 : 1112 – 1115 . 10.1126/science.1178534 CASPubMedWeb of Science®Google Scholar Shabir , G. , Aslam , K. , Khan , A.R. et al. ( 2017 ). Rice molecular markers and genetic mapping: current status and prospects . Journal of Integrative Agriculture 16 : 1879 – 1891 . 10.1016/S2095-3119(16)61591-5 CASGoogle Scholar Shomura , A. , Izawa , T. , Ebana , K. et al. ( 2008 ). Deletion in a gene associated with grain size increased yields during rice domestication . Nature Genetics 40 : 1023 – 1028 . 10.1038/ng.169 CASPubMedWeb of Science®Google Scholar Singh , V.K. , Khan , A.W. , Saxena , R.K. et al. ( 2017 ). Indel-seq: a fast-forward genetics approach for identification of trait-associated putative candidate genomic regions and its application in pigeonpea (Cajanus cajan) . Plant Biotechnology Journal 15 : 906 – 914 . 10.1111/pbi.12685 CASPubMedWeb of Science®Google Scholar Singh , M. , Singh , A. , Yadav , N. , and Yadav , D.K. ( 2022 ). Current perspectives of ubiquitination and SUMOylation in abiotic stress tolerance in plants . Frontiers in Plant Science 13 : 993194 . 10.3389/fpls.2022.993194 Google Scholar Song , X.-J. , Huang , W. , Shi , M. et al. ( 2007 ). A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase . Nature Genetics 39 : 623 – 630 . 10.1038/ng2014 CASPubMedWeb of Science®Google Scholar Spindel , J. , Wright , M. , Chen , C. et al. ( 2013 ). Bridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations . Theoretical and Applied Genetics 126 : 2699 – 2716 . 10.1007/s00122-013-2166-x CASPubMedWeb of Science®Google Scholar Sundaram , R.M. , Vishnupriya , M.R. , Biradar , S.K. et al. ( 2008 ). Marker assisted introgression of bacterial blight resistance in Samba Mahsuri, an elite indica rice variety . Euphytica 160 : 411 – 422 . 10.1046/j.1365-313X.2003.01976.x CASPubMedWeb of Science®Google Scholar Taagen , E. , Bogdanove , A.J. , and Sorrells , M.E. ( 2020 ). Counting on crossovers: controlled recombination for plant breeding . Trends in Plant Science 25 : 455 – 465 . 10.1016/j.tplants.2019.12.017 CASPubMedWeb of Science®Google Scholar Tanaka , J. , Hayashi , T. , and Iwata , H. ( 2016 ). A practical, rapid generation-advancement system for rice breeding using simplified biotron breeding system . Breeding Science 66 : 542 – 551 . 10.1270/jsbbs.15038 PubMedWeb of Science®Google Scholar Thomson , M.J. ( 2014 ). High-throughput SNP genotyping to accelerate crop improvement . Plant Breeding and Biotechnology 2 : 195 – 212 . 10.9787/PBB.2014.2.3.195 Google Scholar Tomato Genome Consortium, X ( 2012 ). The tomato genome sequence provides insights into fleshy fruit evolution . Nature 485 : 635 . 10.1038/nature11119 PubMedGoogle Scholar Varshney , R.K. , Graner , A. , and Sorrells , M.E. ( 2005 ). Genomics-assisted breeding for crop improvement . Trends in Plant Science 10 : 621 – 630 . 10.1016/j.tplants.2005.10.004 CASPubMedWeb of Science®Google Scholar Varshney , R.K. , Terauchi , R. , and McCouch , S.R. ( 2014 ). Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding . PLoS Biology 12 : e1001883 . 10.1371/journal.pbio.1001883 PubMedGoogle Scholar Varshney , R.K. , Saxena , R.K. , Upadhyaya , H.D. et al. ( 2017 ). Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits . Nature Genetics 49 : 1082 – 1088 . 10.1038/ng.3872 CASPubMedWeb of Science®Google Scholar Vasistha , N.K. , Balasubramaniam , A. , Mishra , V.K. et al. ( 2017 ). Molecular introgression of leaf rust resistance gene Lr34 validates enhanced effect on resistance to spot blotch in spring wheat . Euphytica 213 : 1 – 10 . 10.1007/s10681-017-2051-9 CASGoogle Scholar Velasco , R. , Zharkikh , A. , Affourtit , J. et al. ( 2010 ). The genome of the domesticated apple (Malus× domestica Borkh.) . Nature Genetics 42 : 833 – 839 . 10.1038/ng.654 CASPubMedWeb of Science®Google Scholar Verma , S. , Gupta , S. , Bandhiwal , N. et al. ( 2015 ). High-density linkage map construction and mapping of seed trait QTLs in chickpea (Cicer arietinum L.) using genotyping-by-sequencing (GBS) . Scientific Reports 5 : 17512 . 10.1038/srep17512 CASPubMedWeb of Science®Google Scholar Vinod , K. and Heuer , S. ( 2012 ). Approaches towards nitrogen-and phosphorus-efficient rice . AoB Plants 2012 : pls028 . 10.1093/aobpla/pls028 Google Scholar Wang , X. , Yu , K. , Li , H. et al. ( 2015 ). High-density SNP map construction and QTL identification for the apetalous character in Brassica napus L . Frontiers in Plant Science 6 : 1164 . 10.3389/fpls.2015.01164 PubMedWeb of Science®Google Scholar Wang , Y. , Lu , J. , Ren , T. et al. ( 2017 ). Effects of nitrogen and tiller type on grain yield and physiological responses in rice . AoB Plants 9 : plx012 . 10.1093/aobpla/plx012 PubMedGoogle Scholar Wang , J. , Zhang , X. , and Lin , Z. ( 2018 ). QTL mapping in a maize F2 population using Genotyping-by-Sequencing and a modified fine-mapping strategy . Plant Science 276 : 171 – 180 . 10.1016/j.plantsci.2018.08.019 CASPubMedWeb of Science®Google Scholar Wang , T. , Wei , L. , Wang , J. et al. ( 2020 ). Integrating GWAS, linkage mapping and gene expression analyses reveals the genetic control of growth period traits in rapeseed (Brassica napus L.) . Biotechnology for Biofuels 13 : 1 – 19 . 10.1186/s13068-020-01774-0 PubMedWeb of Science®Google Scholar Watson , A. , Ghosh , S. , Williams , M.J. et al. ( 2018 ). Speed breeding is a powerful tool to accelerate crop research and breeding . Nature Plants 4 : 23 – 29 . 10.1038/s41477-017-0083-8 PubMedWeb of Science®Google Scholar Waziri , A. , Kumar , P. , and Purty , R. ( 2016 ). Saltol QTL and their role in salinity tolerance in rice . Austin Journal of Biotechnology & Bioengineering 3 : 1067 . Google Scholar Weng , J. , Gu , S. , Wan , X. et al. ( 2008 ). Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight . Cell Research 18 : 1199 – 1209 . 10.1038/cr.2008.307 CASPubMedWeb of Science®Google Scholar Xu , J. , Jiang , J. , Dong , X. et al. ( 2012 ). Introgression of bacterial blight (BB) resistance genes Xa7 and Xa21 into popular restorer line and their hybrids by molecular marker-assisted backcross (MABC) selection scheme . African Journal of Biotechnology 11 : 8225 – 8233 . CASGoogle Scholar Yadav , M.R. , Choudhary , M. , Singh , J. et al. ( 2022 ). Impacts, tolerance, adaptation, and mitigation of heat stress on wheat under changing climates . International Journal of Molecular Sciences 23 : 2838 . 10.3390/ijms23052838 PubMedWeb of Science®Google Scholar Yi , M. , Nwe , K.T. , Vanavichit , A. et al. ( 2009 ). Marker assisted backcross breeding to improve cooking quality traits in Myanmar rice cultivar Manawthukha . Field Crops Research 113 : 178 – 186 . 10.1016/j.fcr.2009.05.006 Web of Science®Google Scholar Yu , J. , Holland , J.B. , McMullen , M.D. , and Buckler , E.S. ( 2008 ). Genetic design and statistical power of nested association mapping in maize . Genetics 178 : 539 – 551 . 10.1534/genetics.107.074245 PubMedWeb of Science®Google Scholar Zhao , L. , Yuanda , L. , Caiping , C. et al. ( 2012 ). Toward allotetraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information . BMC Genomics 13 : 1 – 17 . 10.1186/1471-2164-13-S8-S1 PubMedGoogle Scholar Zhao , C. , Liu , B. , Piao , S. et al. ( 2017 ). Temperature increase reduces global yields of major crops in four independent estimates . Proceedings of the National Academy of Sciences 114 : 9326 – 9331 . 10.1073/pnas.1701762114 CASPubMedWeb of Science®Google Scholar Zhao , Q. , Feng , Q. , Lu , H. et al. ( 2018 ). Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice . Nature Genetics 50 : 278 – 284 . 10.1038/s41588-018-0041-z CASPubMedWeb of Science®Google Scholar Zheng , Z. , Wang , H. , Chen , G. et al. ( 2013 ). A procedure allowing up to eight generations of wheat and nine generations of barley per annum . Euphytica 191 : 311 – 316 . 10.1007/s10681-013-0909-z Web of Science®Google Scholar Zhou , Y. , Chebotarov , D. , Kudrna , D. et al. ( 2020 ). A platinum standard pangenome resource that represents the population structure of Asian rice . Scientific Data 7 ( 1 ): 113 . 10.1038/s41597-020-0438-2 CASPubMedGoogle Scholar OMICs‐based Techniques for Global Food Security ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DrW先生完成签到,获得积分10
2秒前
飞云之下发布了新的文献求助10
3秒前
情怀应助TangQQ采纳,获得20
3秒前
汽水完成签到 ,获得积分10
3秒前
Natasha发布了新的文献求助10
4秒前
4秒前
6秒前
南祎完成签到 ,获得积分10
7秒前
hzbzh完成签到,获得积分10
7秒前
bkagyin应助atropine采纳,获得30
8秒前
沈摇伽完成签到,获得积分20
8秒前
8秒前
英姑应助海洋之心采纳,获得10
10秒前
rsq发布了新的文献求助10
10秒前
11秒前
tennisgirl发布了新的文献求助10
12秒前
12秒前
吉子发布了新的文献求助10
12秒前
12秒前
林妍完成签到 ,获得积分10
14秒前
16秒前
16秒前
Natasha完成签到,获得积分10
18秒前
lfj1865发布了新的文献求助10
18秒前
19秒前
19秒前
19秒前
后会无期完成签到,获得积分10
21秒前
TangQQ发布了新的文献求助20
21秒前
atropine发布了新的文献求助30
22秒前
往昔北人完成签到 ,获得积分10
22秒前
lin完成签到,获得积分10
22秒前
23秒前
阿佳发布了新的文献求助30
23秒前
暗能量完成签到,获得积分20
25秒前
宫童庆发布了新的文献求助10
26秒前
常常发布了新的文献求助10
26秒前
26秒前
苏幕遮完成签到,获得积分10
26秒前
zhrmghg521完成签到,获得积分10
27秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2420818
求助须知:如何正确求助?哪些是违规求助? 2111058
关于积分的说明 5342513
捐赠科研通 1838357
什么是DOI,文献DOI怎么找? 915312
版权声明 561154
科研通“疑难数据库(出版商)”最低求助积分说明 489443