Sulfur-Doped CoNi Layered Double Hydroxide/Carbon Nanofiber Composite Films for Flexible Supercapacitors

超级电容器 复合数 材料科学 聚丙烯腈 碳纳米纤维 纳米纤维 静电纺丝 电容 化学工程 复合材料 纳米技术 化学 碳纳米管 聚合物 电极 物理化学 工程类
作者
Wei Song,Kaixuan Wang,Xiao Lian,Helin Niu
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:7 (9): 10818-10828 被引量:14
标识
DOI:10.1021/acsanm.4c01348
摘要

Carbon nanofiber (CNF) films prepared by traditional methods have limited capacity; thus, they cannot meet the requirements of high-performance flexible supercapacitors. Compounding CoNi layered double hydroxides (CoNi-LDHs) with flexible CNF films should be a promising strategy to increase energy density and maintain high power density and durable stability. Here, the flexible CNF films were obtained by electrospinning polyacrylonitrile films treated by an acetate-assisted alcohol thermal method and then carbonized at high temperatures. Subsequently, sulfur-doped CoNi-LDH/CNF composite films are prepared by a hydrothermal method. The CNF films provide a three-dimensional (3D) conductive network structure, ensuring that the redox-active center of CoNi-LDH nanosheets has excellent electron and ion transport properties and sufficient active sites. Sulfur doping can not only provide more anchoring sites for loading CoNi-LDH nanosheets but also further improve its electronic conductivity, thereby reducing the electrochemical impedance. The synergistic effect of the doping effect and structural advantage is beneficial to improve electrochemical performance and cycle stability. The S-CoNi-LDH/CNF composite film has an ultrahigh specific capacitance of 1618 F g–1 at 1 A g–1. Besides, the S-CoNi-LDH/CNF composite film and activated carbon (AC) are assembled into S-CoNi-LDH/CNF//AC asymmetric supercapacitors with a maximum energy density of 61.7 Wh kg–1 at 400 W kg–1. It also has excellent cycle stability (90.3% capacitance retention) over 10,000 charge–discharge cycles. This work provides an effective strategy for designing flexible supercapacitors with a high energy density and excellent cycle stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助单纯的柚子采纳,获得10
1秒前
dfggg发布了新的文献求助10
1秒前
澤_975发布了新的文献求助10
2秒前
3秒前
粗犷的惋清完成签到,获得积分10
3秒前
bkagyin应助123123采纳,获得10
5秒前
6秒前
小小菜鸟发布了新的文献求助30
6秒前
yan完成签到 ,获得积分10
6秒前
dfggg完成签到,获得积分10
6秒前
6秒前
威武的雨筠完成签到 ,获得积分10
7秒前
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
sunny661104发布了新的文献求助10
8秒前
8秒前
852应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得30
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
Jasper应助糊涂的河马采纳,获得10
11秒前
迪歪歪应助大猩猩采纳,获得10
12秒前
只吃7分饱完成签到,获得积分10
12秒前
顺心秋天发布了新的文献求助10
13秒前
William_l_c发布了新的文献求助10
13秒前
14秒前
15秒前
雨中雨翼完成签到,获得积分10
16秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615319
求助须知:如何正确求助?哪些是违规求助? 4700309
关于积分的说明 14907386
捐赠科研通 4742168
什么是DOI,文献DOI怎么找? 2548117
邀请新用户注册赠送积分活动 1511806
关于科研通互助平台的介绍 1473793