Cross-sectionally Calculated Metabolic Aging Does Not Relate to Longitudinal Metabolic Changes—Support for Stratified Aging Models

心理学 老年学 医学
作者
Mika Ala‐Korpela,Terho Lehtimäki,Mika Kähönen,Jorma Viikari,Markus Perola,Veikko Salomaa,Johannes Kettunen,Olli T. Raitakari,Ville‐Petteri Mäkinen
出处
期刊:The Journal of Clinical Endocrinology and Metabolism [Oxford University Press]
卷期号:108 (8): 2099-2104 被引量:10
标识
DOI:10.1210/clinem/dgad032
摘要

Abstract Context Aging varies between individuals, with profound consequences for chronic diseases and longevity. One hypothesis to explain the diversity is a genetically regulated molecular clock that runs differently between individuals. Large human studies with long enough follow-up to test the hypothesis are rare due to practical challenges, but statistical models of aging are built as proxies for the molecular clock by comparing young and old individuals cross-sectionally. These models remain untested against longitudinal data. Objective We applied novel methodology to test if cross-sectional modeling can distinguish slow vs accelerated aging in a human population. Methods We trained a machine learning model to predict age from 153 clinical and cardiometabolic traits. The model was tested against longitudinal data from another cohort. The training data came from cross-sectional surveys of the Finnish population (n = 9708; ages 25-74 years). The validation data included 3 time points across 10 years in the Young Finns Study (YFS; n = 1009; ages 24-49 years). Predicted metabolic age in 2007 was compared against observed aging rate from the 2001 visit to the 2011 visit in the YFS dataset and correlation between predicted vs observed metabolic aging was determined. Results The cross-sectional proxy failed to predict longitudinal observations (R2 = 0.018%, P = 0.67). Conclusion The finding is unexpected under the clock hypothesis that would produce a positive correlation between predicted and observed aging. Our results are better explained by a stratified model where aging rates per se are similar in adulthood but differences in starting points explain diverging metabolic fates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助hiliang采纳,获得30
刚刚
昏睡的咖啡完成签到,获得积分10
1秒前
科研通AI5应助月影出岫采纳,获得10
1秒前
zfy完成签到,获得积分10
1秒前
万能图书馆应助某某采纳,获得10
2秒前
2秒前
柚子大王发布了新的文献求助10
4秒前
火柴人完成签到,获得积分20
4秒前
4秒前
wangqing发布了新的文献求助10
5秒前
缥缈耷发布了新的文献求助10
5秒前
5秒前
CipherSage应助大理想家采纳,获得10
5秒前
Cheetahhh发布了新的文献求助10
5秒前
小太阳发布了新的文献求助10
5秒前
像紫菜一样讨厌完成签到,获得积分20
6秒前
6秒前
6秒前
白羽完成签到,获得积分20
7秒前
耍酷千亦发布了新的文献求助10
7秒前
李健的小迷弟应助Matthewwt采纳,获得10
7秒前
7秒前
陶醉书包完成签到 ,获得积分10
8秒前
8秒前
8秒前
落后鹭洋发布了新的文献求助10
8秒前
Paul111完成签到,获得积分10
8秒前
诸葛钢铁完成签到,获得积分10
9秒前
糖炒小米粒完成签到,获得积分20
9秒前
9秒前
10秒前
任性凤凰发布了新的文献求助10
11秒前
顾涵山发布了新的文献求助20
11秒前
Cheetahhh完成签到,获得积分10
11秒前
seedcode发布了新的文献求助10
12秒前
娷静完成签到,获得积分10
12秒前
上官若男应助SXM采纳,获得10
12秒前
无限猕猴桃完成签到,获得积分10
13秒前
wanci应助缥缈耷采纳,获得10
13秒前
Anderson732发布了新的文献求助10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786121
求助须知:如何正确求助?哪些是违规求助? 3331636
关于积分的说明 10251966
捐赠科研通 3047060
什么是DOI,文献DOI怎么找? 1672358
邀请新用户注册赠送积分活动 801243
科研通“疑难数据库(出版商)”最低求助积分说明 760074