材料科学
压电
居里温度
压电系数
铋铁氧体
陶瓷
四方晶系
三元运算
工作温度
机电耦合系数
复合材料
分析化学(期刊)
光电子学
铁电性
凝聚态物理
结晶学
晶体结构
电介质
热力学
多铁性
化学
物理
色谱法
铁磁性
计算机科学
程序设计语言
作者
Yunyao Huang,Leiyang Zhang,Ruiyi Jing,Yang Yang,V. Ya. Shur,Xiaoyong Wei,Li Jin
标识
DOI:10.1016/j.jmst.2023.05.063
摘要
Due to the thermal depolarization effect, adequate piezoelectric performance with high operating temperature is regarded to be challenging to accomplish concurrently in piezoceramics for applications in specific piezoelectric devices. In this work, we synthesized (0.8−x)BiFeO3-xPbTiO3-0.2Ba(Zr0.25Ti0.75)O3 (abbreviated as BFO-xPT-BZT) ternary solid solutions with 0.15 ≤ x ≤ 0.30 by conventional solid-state reaction method. The MPB composition with a coexisting state of rhombohedral-tetragonal phases exhibits enhanced electromechanical properties, including Curie temperature of 380°C, large-signal equivalent piezoelectric coefficient d33* of 395 pm V–1, small-signal piezoelectric coefficient d33 of 302 pC N–1, and electromechanical coupling factor kp of 50.2%, which is comparable to commercial PZT-5A ceramics, indicating potential in high-temperature applications. Furthermore, in-situ x-ray diffraction (XRD) and piezoelectric force microscopic (PFM) techniques demonstrate that multiphase coexistence and complex nanodomains promote piezoelectric response via synergism. The x = 0.24 composition exhibits the highest in-situ d33 of 577 pC N–1 and good temperature stability in 30−280°C, indicating that BZT-modified BFO-PT ceramics are promising candidates for high-temperature piezoelectric devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI