FADS: Fourier-Augmentation Based Data-Shunting for Few-Shot Classification

计算机科学 调车 弹丸 傅里叶变换 人工智能 一次性 计算机视觉 模式识别(心理学) 数学 医学 材料科学 工程类 机械工程 内科学 数学分析 冶金
作者
Shuai Shao,Yan Wang,Bin Liu,Weifeng Liu,Yanjiang Wang,Baodi Liu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 839-851 被引量:22
标识
DOI:10.1109/tcsvt.2023.3292519
摘要

Collecting a substantial number of labeled samples is infeasible in many real-world scenarios, thereby bringing out challenges for supervised classification. The research on Few-Shot Classification (FSC) aims to address this issue. Current FSC methods mainly leverage ideas such as meta-learning, self-supervised learning, and data augmentation. Among them, data augmentation appears to be an extremely efficient approach to alleviate the aforementioned data-deficiency problem. Here, we propose a novel data augmentation based FSC method termed Fourier-Augmentation based Data-Shunting (FADS). FADS mainly contains two operations, namely Fourier-based data augmentation (FDA) and data shunting. (i) Fourier transform has a desirable property for classification tasks: the image's phase and amplitude components in the frequency domain correspond to its high-level structure (i.e., semantic) and low-level style (i.e., statistic) information, which do not interfere with each other. Inspired by this observation, we design the FDA operation, which changes the amplitude spectrum of the to-be-augmented images to obtain new images of the same category. (ii) Then we design the data shunting operation to cooperate with the FDA to accomplish FSC. Specifically, it splits the augmented data into different groups to get independent, weak decisions and then fuses them to obtain a unified, strong decision. We conduct experiments on four benchmark datasets. Results show that utilizing our method brings a performance gain of 0.3%-2% in terms of classification accuracy, compared with the classical methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我是老大应助am采纳,获得10
1秒前
2秒前
2秒前
cchx发布了新的文献求助10
2秒前
2秒前
3秒前
李健应助烂漫的凡波采纳,获得10
4秒前
Ava应助无辜丹翠采纳,获得10
4秒前
4秒前
蓝雨冰竹发布了新的文献求助10
4秒前
小蚊子完成签到,获得积分10
4秒前
Aaroncrow发布了新的文献求助10
5秒前
王77发布了新的文献求助10
5秒前
5秒前
深情安青应助630天天采纳,获得20
6秒前
6秒前
¥#¥-11完成签到,获得积分10
6秒前
寒冷念文完成签到,获得积分10
7秒前
Bingcai完成签到,获得积分10
8秒前
Jasper应助长樱采纳,获得10
8秒前
8秒前
8秒前
斯文败类应助玉襄采纳,获得10
9秒前
XRECP发布了新的文献求助10
9秒前
谢慧蕴完成签到,获得积分10
9秒前
富士山来信完成签到,获得积分10
9秒前
10秒前
峥嵘完成签到,获得积分10
11秒前
浮游应助海峰荣采纳,获得10
12秒前
12秒前
12秒前
华仔应助科研小能手采纳,获得10
13秒前
兔子发布了新的文献求助30
13秒前
chenqiumu应助研友_nVNBVn采纳,获得30
13秒前
木木发布了新的文献求助20
14秒前
kiki0808完成签到 ,获得积分10
14秒前
兔子完成签到,获得积分10
14秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264034
求助须知:如何正确求助?哪些是违规求助? 4424379
关于积分的说明 13772854
捐赠科研通 4299447
什么是DOI,文献DOI怎么找? 2359095
邀请新用户注册赠送积分活动 1355361
关于科研通互助平台的介绍 1316624