Feasibility study on using house-tree-person drawings for automatic analysis of depression

萧条(经济学) 威尔科克森符号秩检验 人工智能 重性抑郁障碍 比例(比率) 心理学 计算机科学 临床心理学 心情 教育学 物理 量子力学 经济 课程 宏观经济学
作者
Jie Zhang,Yaoxiang Yu,Vincent Barra,Xiaoming Ruan,Yu Chen,Bo Cai
出处
期刊:Computer Methods in Biomechanics and Biomedical Engineering [Taylor & Francis]
卷期号:27 (9): 1129-1140 被引量:2
标识
DOI:10.1080/10255842.2023.2231113
摘要

Major depression is a severe psychological disorder typically diagnosed using scale tests and through the subjective assessment of medical professionals. Along with the continuous development of machine learning techniques, computer technology has been increasingly employed to identify depression in recent years. Traditional methods of automatic depression recognition rely on using the patient's physiological data, such as facial expressions, voice, electroencephalography (EEG), and magnetic resonance imaging (MRI) as input. However, the acquisition cost of these data is relatively high, making it unsuitable for large-scale depression screening. Thus, we explore the possibility of utilizing a house-tree-person (HTP) drawing to automatically detect major depression without requiring the patient's physiological data. The dataset we used for this study consisted of 309 drawings depicting individuals at risk of major depression and 290 drawings depicting individuals without depression risk. We classified the eight features extracted from HTP sketches using four machine-learning models and used multiple cross-validations to calculate recognition rates. The best classification accuracy rate among these models reached 97.2%. Additionally, we conducted ablation experiments to analyze the association between features and information on depression pathology. The results of Wilcoxon rank-sum tests showed that seven of the eight features significantly differed between the major depression group and the regular group. We demonstrated significant differences in HTP drawings between patients with severe depression and everyday individuals, and using HTP sketches to identify depression automatically is feasible, providing a new approach for automatic identification and large-scale screening of depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风信子完成签到,获得积分10
刚刚
桥豆麻袋完成签到,获得积分10
1秒前
木康薛完成签到,获得积分10
2秒前
吐司炸弹完成签到,获得积分10
3秒前
nanostu完成签到,获得积分10
3秒前
mayfly完成签到,获得积分10
3秒前
Brief完成签到,获得积分10
3秒前
余味应助科研通管家采纳,获得10
4秒前
cdercder应助科研通管家采纳,获得10
5秒前
儒雅的若翠完成签到,获得积分10
5秒前
5秒前
cdercder应助科研通管家采纳,获得10
5秒前
cdercder应助科研通管家采纳,获得10
5秒前
Amikacin完成签到,获得积分10
5秒前
鹏举瞰冷雨完成签到,获得积分10
5秒前
NexusExplorer应助guoer采纳,获得10
8秒前
李友健完成签到 ,获得积分10
11秒前
12秒前
lili完成签到 ,获得积分10
12秒前
小琪完成签到 ,获得积分10
12秒前
Tina完成签到 ,获得积分10
13秒前
Omni发布了新的文献求助10
19秒前
wangwang完成签到 ,获得积分10
19秒前
guoer完成签到,获得积分10
20秒前
天明完成签到,获得积分10
20秒前
Ander完成签到 ,获得积分10
23秒前
gengfu完成签到,获得积分10
27秒前
景代丝完成签到,获得积分0
27秒前
青春完成签到,获得积分10
31秒前
宇文数学完成签到 ,获得积分10
34秒前
35秒前
慕青应助dungaway采纳,获得10
41秒前
五本笔记完成签到 ,获得积分10
42秒前
Stone发布了新的文献求助10
42秒前
Silence完成签到 ,获得积分10
43秒前
Echoheart发布了新的文献求助10
46秒前
48秒前
清脆愫完成签到 ,获得积分10
49秒前
天将明完成签到 ,获得积分10
51秒前
悠悠发布了新的文献求助10
52秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800980
求助须知:如何正确求助?哪些是违规求助? 3346569
关于积分的说明 10329587
捐赠科研通 3063068
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726