Global-Local Attention Mechanism Based Small Object Detection

目标检测 计算机科学 人工智能 对象(语法) 特征(语言学) 块(置换群论) 棱锥(几何) 模式识别(心理学) 特征提取 融合机制 计算机视觉 数据挖掘 融合 数学 哲学 语言学 几何学 脂质双层融合
作者
Bao Liu,Jinchuan Huang
标识
DOI:10.1109/ddcls58216.2023.10165957
摘要

A small object detection method based on the combination of global and local attention mechanism is proposed in this paper to detect small objects distributed in images. object detection model based on local attention mechanism has good detection accuracy and speed. However, its performance will be reduced due to the smaller size of the object, especially in the case of missed detection and false detection, and the proposed Global Local Detection Model (GLD) can solve this problem. Specifically, a model solution of the Global and Local Combined Attention Block (GL-CAB) combining deep global features and shallow local features of the network is proposed to solve the problem of small object missed detection. On the one hand, the model focuses on small object s in the local and global ranges, and on the other hand, it supplements the small object information lost during the down-sampling process. Aiming at the situation of pseudo-information generated by small object feature fusion, a multi-branch feature pyramid network (MB-FPN) is proposed. Multi-input is used to form multi-scale feature maps for multi-feature fusion on different branches, which reduces the formation of pseudo-information and enhances the extraction of detailed features of small object by the network. Then, the AU-AIR and VOC2007 datasets are selected for experimental training, and the object detection evaluation indicators (AP, AR, F1, mAP, and FPS) are introduced for comparative analysis. Finally, the simulation results show that the proposed method has better performance to solve the problem of missed detection and false detection of small object.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
乐意完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
七羽完成签到 ,获得积分10
6秒前
夜阑卧听完成签到,获得积分10
6秒前
迟大猫应助舒适元柏采纳,获得10
8秒前
8秒前
八号向日葵完成签到 ,获得积分10
9秒前
xiechangshan发布了新的文献求助10
11秒前
JerryZ发布了新的文献求助10
12秒前
aaa完成签到,获得积分10
12秒前
烟花应助慢慢子采纳,获得10
13秒前
三三完成签到 ,获得积分10
13秒前
奎奎完成签到,获得积分10
14秒前
科目三应助GOURDIN采纳,获得10
15秒前
机灵哈密瓜完成签到,获得积分10
15秒前
16秒前
huco完成签到,获得积分10
17秒前
eternity136应助cc采纳,获得20
18秒前
dudu完成签到,获得积分10
19秒前
小马甲应助奎奎采纳,获得10
20秒前
HEIKU应助科研通管家采纳,获得10
20秒前
李健应助科研通管家采纳,获得10
20秒前
20秒前
lynn应助科研通管家采纳,获得20
20秒前
无花果应助科研通管家采纳,获得10
20秒前
乐乐应助科研通管家采纳,获得10
20秒前
bkagyin应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
香蕉觅云应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
HEIKU应助科研通管家采纳,获得10
20秒前
wang应助科研通管家采纳,获得10
21秒前
HEIKU应助科研通管家采纳,获得10
21秒前
1+1应助科研通管家采纳,获得10
21秒前
jwx应助科研通管家采纳,获得10
21秒前
Auston_zhong应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671619
求助须知:如何正确求助?哪些是违规求助? 3228325
关于积分的说明 9779523
捐赠科研通 2938636
什么是DOI,文献DOI怎么找? 1610158
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093