Consensus model for probabilistic linguistic multi-attribute group decision-making based on incomplete social trust networks

计算机科学 群体决策 概率逻辑 人工智能 群(周期表) 自然语言处理 机器学习 心理学 社会心理学 有机化学 化学
作者
Kaiying Kang,Jialiang Xie,Xiaohui Liu,Jianxiang Qiu
出处
期刊:International Journal of Intelligent Computing and Cybernetics [Emerald (MCB UP)]
卷期号:17 (4): 844-868 被引量:1
标识
DOI:10.1108/ijicc-07-2024-0332
摘要

Purpose Experts may adjust their assessments through communication and mutual influence, and this dynamic evolution relies on the spread of internal trust relationships. Due to differences in educational backgrounds and knowledge experiences, trust relationships among experts are often incomplete. To address such issues and reduce decision biases, this paper proposes a probabilistic linguistic multi-attribute group decision consensus model based on an incomplete social trust network (InSTN). Design/methodology/approach In this paper, we first define the new trust propagation operators based on the operations of Probability Language Term Set (PLTS) with algebraic t-conorm and t-norm, which are combined with trust aggregation operators to estimate InSTN. The adjustment coefficients are then determined through trust relations to quantify their impact on expert evaluation. Finally, the particle swarm algorithm (PSO) is used to optimize the expert evaluation to meet the consensus threshold. Findings This study demonstrates the feasibility of the method through the selection of treatment plans for complex cases. The proposed consensus model exhibits greater robustness and effectiveness compared to traditional methods, mainly due to the effective regulation of trust relations in the decision-making process, which reduces decision bias and inconsistencies. Originality/value This paper introduces a novel probabilistic linguistic multi-attribute swarm decision consensus model based on an InSTN. It proposes a redefined trust propagation and aggregation approach to estimate the InSTN. Moreover, the computational efficiency and decision consensus accuracy of the proposed model are enhanced by using PSO optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助紫薇采纳,获得10
1秒前
Orange应助紫薇采纳,获得10
1秒前
完美世界应助紫薇采纳,获得10
1秒前
大个应助紫薇采纳,获得10
1秒前
在水一方应助紫薇采纳,获得10
1秒前
今后应助紫薇采纳,获得10
1秒前
斯文败类应助紫薇采纳,获得10
1秒前
科研通AI6应助紫薇采纳,获得10
1秒前
善学以致用应助紫薇采纳,获得10
1秒前
桐桐应助紫薇采纳,获得10
1秒前
本是个江湖散人完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
Espoir完成签到,获得积分10
5秒前
Hello应助优雅妙柏采纳,获得10
6秒前
伤心词香菇酱完成签到,获得积分10
6秒前
7秒前
DemonH发布了新的文献求助10
7秒前
lambda完成签到,获得积分10
7秒前
充电宝应助如风采纳,获得10
7秒前
雨眠完成签到,获得积分20
7秒前
NexusExplorer应助lala39采纳,获得10
8秒前
8秒前
山泉发布了新的文献求助10
8秒前
汤柏钧完成签到 ,获得积分10
9秒前
9秒前
小李要上岸完成签到,获得积分10
9秒前
AAA发布了新的文献求助10
9秒前
10秒前
10秒前
阳光完成签到 ,获得积分10
10秒前
10秒前
10秒前
xiaoqf完成签到,获得积分10
11秒前
张莜莜发布了新的文献求助10
11秒前
852应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637185
求助须知:如何正确求助?哪些是违规求助? 4742945
关于积分的说明 14998249
捐赠科研通 4795434
什么是DOI,文献DOI怎么找? 2561969
邀请新用户注册赠送积分活动 1521481
关于科研通互助平台的介绍 1481513