Developing and Validating a Multimodal Dataset for Neonatal Pain Assessment to Improve AI Algorithms With Clinical Data

组内相关 医学 疼痛评估 模式治疗法 科恩卡帕 卡帕 物理疗法 机器学习 人工智能 疼痛管理 计算机科学 心理测量学 外科 语言学 临床心理学 哲学
作者
Nannan Yang,Ying Zhuang,Huiping Jiang,Yuanyuan Fang,Jing Li,Li Zhu,Wanyuan Zhao,Tingqi Shi
出处
期刊:Advances in Neonatal Care [Ovid Technologies (Wolters Kluwer)]
卷期号:24 (6): 578-585 被引量:2
标识
DOI:10.1097/anc.0000000000001205
摘要

Background: Using Artificial Intelligence (AI) for neonatal pain assessment has great potential, but its effectiveness depends on accurate data labeling. Therefore, precise and reliable neonatal pain datasets are essential for managing neonatal pain. Purpose: To develop and validate a comprehensive multimodal dataset with accurately labeled clinical data, enhancing AI algorithms for neonatal pain assessment Methods: An assessment team randomly selected healthy neonates for assessment using the Neonatal Pain, Agitation, and Sedation Scale. During painful procedures, 2 cameras recorded neonates’ pain reactions on site. After 2 weeks, assessors labeled the processed pain data on the EasyDL platform in a single-anonymized setting. The pain scores from the 4 single-modal data types were compared to the total pain scores derived from multimodal data. The On-Site Neonatal Pain Assessment completed using paper quality scales is referred to as OS-NPA, while the modality-data neonatal pain labeling performed using labeling software is MD-NPL. Results: The intraclass correlation coefficient among the 4 single-modal groups ranged from 0.938 to 0.969. The overall pain intraclass correlation coefficient score was 0.99, with a Kappa statistic for pain grade agreement of 0.899. The goodness-of-fit for the linear regression models comparing the OS-NPA and MD-NPL for each assessor was greater than 0.96. Implications for Practice and Research: MD-NPL represents a productive alternative to OS-NPA for neonatal pain assessment, and the validity of the data labels within the Multimodality Dataset for Neonatal Acute Pain has been validating. These findings offer reliable validation for algorithms designed to assess neonatal pain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷酷的水壶完成签到,获得积分10
2秒前
壮观的冰双完成签到,获得积分10
2秒前
凶狠的翅膀完成签到,获得积分10
2秒前
陈奕菲完成签到,获得积分10
3秒前
阿東给阿東的求助进行了留言
4秒前
小二郎应助抚琴祛魅采纳,获得10
5秒前
planto发布了新的文献求助10
5秒前
深情安青应助wisdom采纳,获得10
5秒前
发嗲的雨筠完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
风筝鱼完成签到 ,获得积分10
6秒前
未央完成签到,获得积分10
7秒前
泥鳅发布了新的文献求助20
7秒前
8秒前
蓬蓬完成签到,获得积分10
8秒前
白露完成签到 ,获得积分10
8秒前
9秒前
陈老太完成签到 ,获得积分10
10秒前
11秒前
小蘑菇应助haoooooooooooooo采纳,获得10
11秒前
11秒前
哈哈哈发布了新的文献求助10
11秒前
11秒前
szeyuk应助魏笑白采纳,获得10
12秒前
立食劳栖发布了新的文献求助30
12秒前
华仔应助青木羽采纳,获得10
13秒前
louieee完成签到,获得积分10
13秒前
13秒前
科研通AI2S应助小小采纳,获得30
13秒前
14秒前
15秒前
今后应助爱吃咸鱼的夜猫采纳,获得10
17秒前
17秒前
Gary发布了新的文献求助10
17秒前
jadexu发布了新的文献求助10
17秒前
Zola发布了新的文献求助10
17秒前
开开发布了新的文献求助10
18秒前
Sylvia完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483942
求助须知:如何正确求助?哪些是违规求助? 4584399
关于积分的说明 14397356
捐赠科研通 4514299
什么是DOI,文献DOI怎么找? 2473912
邀请新用户注册赠送积分活动 1459930
关于科研通互助平台的介绍 1433260