Deep learning-based automatic contour quality assurance for auto-segmented abdominal MR-Linac contours

轮廓 计算机科学 人工智能 质量保证 分割 卷积神经网络 计算机视觉 模式识别(心理学) 计算机图形学(图像) 医学 外部质量评估 病理
作者
M. Zarenia,Ying Zhang,Christina Sarosiek,Renae Conlin,Asma Amjad,E.S. Paulson
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
标识
DOI:10.1088/1361-6560/ad87a6
摘要

Abstract Objective. Deep-learning auto-segmentation (DLAS) aims to streamline contouring in clinical settings. Nevertheless, achieving clinical acceptance of DLAS remains a hurdle in abdominal MRI, hindering the implementation of efficient clinical workflows for MR-guided online adaptive radiotherapy (MRgOART). Integrating automated contour quality assurance (ACQA) with automatic contour correction (ACC) techniques could optimize the performance of ACC by concentrating on inaccurate contours. Furthermore, ACQA can facilitate the contour selection process from various DLAS tools and/or deformable contour propagation from a prior treatment session. Here, we present the performance of novel DL-based 3D ACQA models for evaluating DLAS contours acquired during MRgOART.

Approach. The ACQA model, based on a 3D convolutional neural network (CNN), was trained using pancreas and duodenum contours obtained from a research DLAS tool on abdominal MRIs acquired from a 1.5T MR-Linac. The training dataset contained abdominal MR images, DL contours, and their corresponding quality ratings, from 103 datasets. The quality of DLAS contours was determined using an in-house contour classification tool, which categorizes contours as acceptable or edit-required based on the expected editing effort. The performance of the 3D ACQA model was evaluated using an independent dataset of 34 abdominal MRIs, utilizing confusion matrices for true and predicted classes.

Main results. The ACQA predicted 'acceptable' and 'edit-required' contours at 72.2% (91/136) and 83.6% (726/868) accuracy for pancreas, and at 71.2% (79/111) and 89.6% (772/862) for duodenum contours, respectively. The model successfully identified false positive (extra) and false negative (missing) DLAS contours at 93.75% (15/16) and %99.7 (438/439) accuracy for pancreas, and at 95% (57/60) and 98.9% (91/99) for duodenum, respectively.

Significance. We developed 3D-ACQA models capable of quickly evaluating the quality of DLAS pancreas and duodenum contours on abdominal MRI. These models can be integrated into clinical workflow, facilitating efficient and consistent contour evaluation process in MRgOART for abdominal malignancies.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yewrlon完成签到,获得积分10
刚刚
杜林完成签到 ,获得积分10
1秒前
1秒前
玄辰应助MXene采纳,获得10
2秒前
3秒前
科研通AI5应助EMM采纳,获得10
4秒前
6秒前
邹秋雨完成签到,获得积分10
7秒前
zmd完成签到 ,获得积分10
7秒前
仰山雪完成签到 ,获得积分10
7秒前
啦啦啦~完成签到 ,获得积分10
7秒前
Selena发布了新的文献求助10
8秒前
8秒前
10秒前
13秒前
稻草人发布了新的文献求助10
14秒前
灵巧的手机完成签到,获得积分10
14秒前
小柯基学从零学起完成签到 ,获得积分10
15秒前
薯片发布了新的文献求助10
15秒前
15秒前
天天快乐应助怡然的姿采纳,获得10
16秒前
levn完成签到,获得积分10
17秒前
zho应助blueblue采纳,获得10
17秒前
EMM发布了新的文献求助10
20秒前
20秒前
zxcvvbnm完成签到 ,获得积分10
23秒前
摆渡人发布了新的文献求助10
23秒前
欧阳完成签到 ,获得积分10
26秒前
无情干饭崽完成签到,获得积分10
26秒前
柯柯完成签到,获得积分10
32秒前
33秒前
早早完成签到,获得积分10
34秒前
momo发布了新的文献求助10
37秒前
39秒前
李爱国应助亲爱的安德烈采纳,获得30
40秒前
赘婿应助早早采纳,获得10
41秒前
hh发布了新的文献求助10
42秒前
summitekey完成签到 ,获得积分10
45秒前
ly普鲁卡因完成签到,获得积分10
46秒前
友好的小鸽子完成签到,获得积分10
50秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843667
求助须知:如何正确求助?哪些是违规求助? 3385966
关于积分的说明 10543359
捐赠科研通 3106778
什么是DOI,文献DOI怎么找? 1711162
邀请新用户注册赠送积分活动 823925
科研通“疑难数据库(出版商)”最低求助积分说明 774390