Prediction Equations for Peak-Ground Accelerations and Velocities in Northeast Japan Using the S-net Data

地质学 网(多面体) 大地测量学 地震学 数学 几何学
作者
Yadab P. Dhakal,Hisahiko Kubo,Takashi Kunugi
出处
期刊:Journal of disaster research [Fuji Technology Press Ltd.]
卷期号:19 (5): 760-771
标识
DOI:10.20965/jdr.2024.p0760
摘要

S-net is a seafloor observation network for earthquakes and tsunamis around the Japan Trench, comprising 150 observatories with seismometers and pressure gauges. The region has been known to experience massive earthquakes, and several magnitude 6 and 7 class earthquakes have occurred after the network was established in 2016. This study constructed ground motion prediction equations (GMPEs) for horizontal peak ground accelerations (PGAs) and peak ground velocities (PGVs) using the S-net data and revealed that the GMPEs can be used to predict the PGAs and PGVs at the land stations where measured S-wave velocities are available. We used a relatively short time window of the S-net records from the viewpoint of earthquake early warning but included S waves. Data from earthquakes of magnitudes between Mw 5.5 and Mw 7.4 were used. The construction of the GMPEs was achieved in two steps. First, regression analysis was conducted for each event data, and mean site residual was obtained over the available records at each S-net site. Second, the data were adjusted by the mean site residuals, and stratified regression analysis, which decouples the source and path factors, was performed. Finally, we applied the GMPEs to predict PGAs and PGVs at the KiK-net sites on land. We determined that the residuals at the KiK-net sites were systematically biased with Vs30 (average S-wave velocity in the upper 30 m). We obtained correction factors for the bias and demonstrated that the PGAs and PGVs at the KiK-net sites could be predicted reasonably well.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
lwl完成签到,获得积分10
3秒前
Vegeta完成签到 ,获得积分10
3秒前
默默的战斗机完成签到,获得积分10
3秒前
susan完成签到,获得积分10
5秒前
ahui完成签到 ,获得积分10
5秒前
踏水追风完成签到,获得积分10
5秒前
樱香音子完成签到,获得积分10
6秒前
张立佳完成签到 ,获得积分10
6秒前
威武冷雪完成签到,获得积分10
6秒前
hkh发布了新的文献求助10
8秒前
goldNAN完成签到 ,获得积分10
8秒前
11秒前
三石完成签到 ,获得积分10
12秒前
黑暗与黎明完成签到 ,获得积分10
12秒前
範範完成签到,获得积分10
13秒前
冷冷暴力完成签到,获得积分10
13秒前
NN完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
15秒前
上官若男应助科研通管家采纳,获得30
15秒前
小学生熊大完成签到,获得积分10
16秒前
拂晓完成签到,获得积分10
16秒前
ChandlerZB完成签到,获得积分10
17秒前
芒果完成签到,获得积分10
17秒前
韭菜发布了新的文献求助10
19秒前
磁带机完成签到,获得积分10
19秒前
Beyond完成签到,获得积分10
19秒前
无限翅膀完成签到,获得积分10
21秒前
yang完成签到,获得积分10
21秒前
张小度ever完成签到 ,获得积分10
21秒前
午后两点最热完成签到,获得积分10
21秒前
糖糖科研顺利呀完成签到 ,获得积分10
22秒前
shuofeng完成签到 ,获得积分10
22秒前
22秒前
spring完成签到,获得积分10
24秒前
lilyy发布了新的文献求助10
25秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
壮语核心名词的语言地图及解释 700
ВЕРНЫЙ ДРУГ КИТАЙСКОГО НАРОДА СЕРГЕЙ ПОЛЕВОЙ 500
ВОЗОБНОВЛЕН ВЫПУСК ЖУРНАЛА "КИТАЙ" НА РУССКОМ ЯЗЫКЕ 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3907032
求助须知:如何正确求助?哪些是违规求助? 3452454
关于积分的说明 10870422
捐赠科研通 3178338
什么是DOI,文献DOI怎么找? 1755892
邀请新用户注册赠送积分活动 849170
科研通“疑难数据库(出版商)”最低求助积分说明 791387