MambaHSI: Spatial-Spectral Mamba for Hyperspectral Image Classification

高光谱成像 遥感 上下文图像分类 全光谱成像 计算机科学 人工智能 环境科学 模式识别(心理学) 计算机视觉 图像(数学) 地质学
作者
Yapeng Li,Yong Luo,Lefei Zhang,Zengmao Wang,Bo Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:24
标识
DOI:10.1109/tgrs.2024.3430985
摘要

Transformer has been extensively explored for hyperspectral image (HSI) classification. However, transformer poses challenges in terms of speed and memory usage because of its quadratic computational complexity. Recently, the Mamba model has emerged as a promising approach, which has strong long-distance modeling capabilities while maintaining a linear computational complexity. However, representing the HSI is challenging for the Mamba due to the requirement for an integrated spatial and spectral understanding. To remedy these drawbacks, we propose a novel HSI classification model based on a Mamba model, named MambaHSI, which can simultaneously model long-range interaction of the whole image and integrate spatial and spectral information in an adaptive manner. Specifically, we design a spatial Mamba block (SpaMB) to model the long-range interaction of the whole image at the pixel-level. Then, we propose a spectral Mamba block (SpeMB) to split the spectral vector into multiple groups, mine the relations across different spectral groups, and extract spectral features. Finally, we propose a spatial-spectral fusion module (SSFM) to adaptively integrate spatial and spectral features of a HSI. To our best knowledge, this is the first image-level HSI classification model based on the Mamba. We conduct extensive experiments on four diverse HSI datasets. The results demonstrate the effectiveness and superiority of the proposed model for HSI classification. This reveals the great potential of Mamba to be the next-generation backbone for HSI models. Codes are available at https://github.com/li-yapeng/MambaHSI .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助Voskov采纳,获得10
刚刚
小小铱完成签到,获得积分10
4秒前
不动的大电视机完成签到,获得积分10
6秒前
虚心的问丝完成签到,获得积分10
7秒前
可爱的函函应助cf2v采纳,获得10
7秒前
8秒前
雨天有伞完成签到,获得积分10
8秒前
科研通AI5应助yah采纳,获得30
9秒前
小姜向阳开完成签到,获得积分10
9秒前
薛栋潮发布了新的文献求助10
13秒前
15秒前
自信的勒发布了新的文献求助10
16秒前
18秒前
Cpp完成签到,获得积分10
21秒前
23秒前
yah发布了新的文献求助30
24秒前
24秒前
雾见春完成签到 ,获得积分10
24秒前
苏苏苏完成签到,获得积分10
24秒前
24秒前
29秒前
淡淡夕阳发布了新的文献求助10
30秒前
30秒前
没头脑完成签到,获得积分10
31秒前
32秒前
打打应助yah采纳,获得10
34秒前
35秒前
绿色心情发布了新的文献求助10
36秒前
38秒前
秋天不回来完成签到,获得积分10
43秒前
AXQ完成签到,获得积分10
43秒前
44秒前
46秒前
49秒前
cf2v完成签到,获得积分0
49秒前
赘婿应助落后醉易采纳,获得10
50秒前
小康找文献完成签到 ,获得积分10
51秒前
Owen应助认真的忆文采纳,获得10
52秒前
害羞便当发布了新的文献求助10
52秒前
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779897
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222437
捐赠科研通 3040465
什么是DOI,文献DOI怎么找? 1668851
邀请新用户注册赠送积分活动 798805
科研通“疑难数据库(出版商)”最低求助积分说明 758563