LTEA-YOLO: An Improved YOLOv5s Model for Small Object Detection

计算机科学 目标检测 推论 算法 人工智能 分割
作者
Bo Li,Shengbao Huang,Guangjin Zhong
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 99768-99778 被引量:7
标识
DOI:10.1109/access.2024.3429282
摘要

Small target information has a lower proportion and severe background interference in the image, which significantly restrains the performance of small object detection algorithms. Most detection models today have a large size, making them unsuitable for deployment on mobile terminals. Based on YOLOv5s, we proposed a light-weight model, LTEA-YOLO, with a model size of only 13.2MB, which has a Light-weight Transformer and Efficient Attention mechanism for small object detection. Firstly, a new light-weight Transformer module, called the inverted Residual Mobile Block (iRMB), is employed as a back-bone network to extract features. Secondly, we created a DBMCSP module (Diverse Branch Modules are inserted into Cross-Stage Partial network), which takes the place of all $C3$ modules in the fusion section, to extract a wider range of feature information without compromising the speed of inference. We then employ $WIoU_{v3}$ as the loss function of box regression to accelerate training convergence and improve positioning precision. Finally, we developed a light-weight and efficient Coordinate and Adaptive Pooling Attention (CAPA) module, which performs better than the Coordinate Attention (CA) module, to be embedded into the SPPF module to enhance detection accuracy. Our model gets 97.8% at mAP@0.5 on the NWPU VHR-10 dataset, which is 3.7% better than YOLOv8s and 6% better than the baseline model YOLOv5s-7.0. In experiments with the VisDrone 2019 dataset, its mAP@0.5 reached 35.8%, outperforming other comparison models. Our LTEA-YOLO, with its small model size, demonstrates superior overall performance in detecting challenging small objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
苹果树下的懒洋洋完成签到 ,获得积分10
1秒前
kwai完成签到 ,获得积分10
2秒前
可爱的函函应助不加糖采纳,获得10
3秒前
4秒前
4秒前
巨星不吃辣完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
7秒前
Hello应助phenory采纳,获得10
7秒前
苹果一手发布了新的文献求助10
7秒前
211发布了新的文献求助10
8秒前
she完成签到,获得积分10
8秒前
9秒前
9秒前
聪明凌柏完成签到 ,获得积分10
10秒前
11秒前
11秒前
蜘蛛道理发布了新的文献求助10
11秒前
LLLZX发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
666完成签到,获得积分10
12秒前
快乐的寄容完成签到 ,获得积分10
12秒前
13秒前
13秒前
13秒前
14秒前
吴羟色胺发布了新的文献求助10
14秒前
Xie发布了新的文献求助10
14秒前
14秒前
情怀应助liu采纳,获得10
15秒前
古渡完成签到,获得积分10
17秒前
12345656656发布了新的文献求助10
17秒前
17秒前
18秒前
花填错了地完成签到,获得积分10
19秒前
科研通AI6应助dyjjudy采纳,获得10
19秒前
phenory发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481669
求助须知:如何正确求助?哪些是违规求助? 4582673
关于积分的说明 14386112
捐赠科研通 4511427
什么是DOI,文献DOI怎么找? 2472323
邀请新用户注册赠送积分活动 1458599
关于科研通互助平台的介绍 1432119