已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MRNet: Rolling bearing fault diagnosis in noisy environment based on multi-scale residual convolutional network

计算机科学 残余物 方位(导航) 断层(地质) 数据挖掘 卷积(计算机科学) 人工智能 特征提取 模式识别(心理学) 实时计算 算法 人工神经网络 地质学 地震学
作者
Linfeng Deng,Cheng Zhao,Xiaoqiang Wang,Guojun Wang,Ruiyu Qiu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (12): 126136-126136 被引量:1
标识
DOI:10.1088/1361-6501/ad78f1
摘要

Abstract Vibration signal collection of rolling bearings in the complex working environment often suffers from significant noise interference, rendering traditional fault diagnosis methods ineffective. To address this challenge, we propose a multi-scale residual convolutional network (MRNet) for diagnosing rolling bearing faults in noisy environments. The MRNet model features multiple convolution branches, each of which utilizes kernels with different sizes to capture fault information at different scales, so this multi-scale framework excels at extracting both local and global information from raw fault vibration signals, enhancing fault recognition accuracy. Additionally, we introduce residual blocks to maintain global information during the convolution operations, preventing useful feature information loss. To further improve global feature extraction capability of the network model, a lightweight Transformer module is developed and incorporated, compensating for some global information that the network’s front-end might fail to capture. The effectiveness of MRNet is validated by using two publicly available rolling bearing fault datasets and our own experiment dataset. The verification results indicate that MRNet outperforms other comparative models, particularly for complex fault diagnosis in noisy environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助大龙哥886采纳,获得10
刚刚
3秒前
4秒前
科研通AI2S应助qzy9527采纳,获得30
8秒前
likey完成签到,获得积分10
8秒前
9秒前
我是老大应助洁净的雪一采纳,获得10
13秒前
去码头整点薯条完成签到,获得积分10
14秒前
完美世界应助yuhuai采纳,获得10
14秒前
osachon发布了新的文献求助10
19秒前
MchemG应助idynamics采纳,获得10
20秒前
22秒前
24秒前
xuelingchen完成签到,获得积分10
24秒前
26秒前
26秒前
26秒前
zho应助羊肉串的悲伤采纳,获得10
28秒前
元元发布了新的文献求助10
29秒前
斯文败类应助XieQinxie采纳,获得10
29秒前
30秒前
科研糊涂神完成签到,获得积分10
30秒前
HEIKU应助犹豫的寄文采纳,获得10
30秒前
32秒前
33秒前
35秒前
yncjdxyjs完成签到,获得积分10
37秒前
zho应助梓然采纳,获得50
37秒前
40秒前
44秒前
wh发布了新的文献求助10
44秒前
yelis发布了新的文献求助10
45秒前
46秒前
yncjdxyjs发布了新的文献求助10
47秒前
47秒前
星辰大海应助科研通管家采纳,获得10
47秒前
猪猪hero应助科研通管家采纳,获得10
47秒前
47秒前
打打应助白云垛采纳,获得10
47秒前
Orange应助科研通管家采纳,获得10
48秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798250
求助须知:如何正确求助?哪些是违规求助? 3343689
关于积分的说明 10317310
捐赠科研通 3060458
什么是DOI,文献DOI怎么找? 1679559
邀请新用户注册赠送积分活动 806665
科研通“疑难数据库(出版商)”最低求助积分说明 763282