亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated atrial arrhythmia classification using 1D-CNN-BiLSTM: A deep network ensemble model

心房颤动 心房扑动 房性心动过速 卷积神经网络 人工智能 计算机科学 P波 窦性心动过速 深度学习 模式识别(心理学) 窦性心律 内科学 心脏病学 医学 导管消融
作者
N. Prasanna Venkatesh,R. Pradeep Kumar,Bala Chakravarthy Neelapu,Kunal Pal,J. Sivaraman
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:97: 106703-106703 被引量:6
标识
DOI:10.1016/j.bspc.2024.106703
摘要

Atrial arrhythmias are more frequently encountered arrhythmias with a significant impact on mortality and morbidity. Electrocardiogram (ECG) consisting of P, Q, R, S, and T waves is a novel, cost-effective diagnostic tool for detecting atrial arrhythmias. Discrimination of atrial arrhythmias from one another is quite difficult and time-consuming in clinical practice, which leads to false positive diagnosis and treatment. Furthermore, atrial anomalies like Atrial Fibrillation (AF), Atrial Flutter (AFL), and Atrial Tachycardia (AT) often co-occur in hospitalized individuals with cardiac conditions. Therefore, the present work proposed an automatic classification technique for differentiating atrial arrhythmias such as AT, AF, AFL, and Sinus Tachycardia (ST) from normal Sinus Rhythm (SR). The automated classification uses a one-dimensional Convolutional Neural Network (1D-CNN) and Bidirectional Long Short-Term Memory (BiLSTM) model ensemble. While the Bi-LSTM network handles the classification of atrial arrhythmias, the 1D-CNN architecture is responsible for automated feature extraction. Data from Lead-II obtained from Chapman University and Shaoxing People's Hospital (CUSPH) were utilized for dataset preparation. The dataset undergoes preprocessing to address missing values, segment the data, and augment it to ensure balance across all classes. We used a 10-fold cross-validation methodology to evaluate the model's efficacy. Our model attained a 94% accuracy across cross-validation and testing datasets when classifying atrial arrhythmias. The current study includes all the arrhythmias originating in the atria and shows the best performance in the state-of-the-art methods, considering atrial arrhythmias as one of the classes. Thus, this method is reliable for precisely diagnosing atrial arrhythmias in real-time clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
l1563358发布了新的文献求助10
15秒前
清脆元冬发布了新的文献求助10
1分钟前
CipherSage应助清脆元冬采纳,获得10
1分钟前
gszy1975完成签到,获得积分10
1分钟前
彩虹儿应助科研通管家采纳,获得10
1分钟前
chen发布了新的文献求助30
1分钟前
科研通AI5应助研友_ana采纳,获得10
2分钟前
钟钟完成签到,获得积分10
2分钟前
lixuebin完成签到 ,获得积分10
2分钟前
chen完成签到,获得积分10
3分钟前
3分钟前
研友_ana发布了新的文献求助10
3分钟前
3分钟前
彩虹儿应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
芜湖发布了新的文献求助10
4分钟前
欢呼若南发布了新的文献求助10
4分钟前
芜湖完成签到,获得积分10
4分钟前
田様应助111采纳,获得10
5分钟前
研友_VZG7GZ应助zrm采纳,获得10
5分钟前
量子星尘发布了新的文献求助150
5分钟前
6分钟前
zrm发布了新的文献求助10
6分钟前
小蘑菇应助potato采纳,获得10
6分钟前
机智幻香完成签到 ,获得积分10
7分钟前
7分钟前
JamesPei应助科研通管家采纳,获得10
7分钟前
科研通AI5应助科研通管家采纳,获得10
7分钟前
111发布了新的文献求助10
7分钟前
7分钟前
potato发布了新的文献求助10
7分钟前
7分钟前
幽默香旋完成签到,获得积分10
8分钟前
杜梦婷发布了新的文献求助10
8分钟前
隐形曼青应助杜梦婷采纳,获得10
8分钟前
9分钟前
共享精神应助科研通管家采纳,获得10
9分钟前
靓丽傲玉完成签到 ,获得积分10
9分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5137647
求助须知:如何正确求助?哪些是违规求助? 4337345
关于积分的说明 13511400
捐赠科研通 4176015
什么是DOI,文献DOI怎么找? 2289822
邀请新用户注册赠送积分活动 1290349
关于科研通互助平台的介绍 1232116