TC-DTA: predicting drug–target binding affinity with transformer and convolutional neural networks

卷积神经网络 计算机科学 药品 人工神经网络 变压器 人工智能 模式识别(心理学) 生物系统 材料科学 物理 药理学 医学 电压 生物 量子力学
作者
Xiwei Tang,Yiqiang Zhou,Mengyun Yang,Wenjun Li
出处
期刊:IEEE Transactions on Nanobioscience [Institute of Electrical and Electronics Engineers]
卷期号:23 (4): 572-578 被引量:4
标识
DOI:10.1109/tnb.2024.3441590
摘要

Bioinformatics is a rapidly evolving field that applies computational methods to analyze and interpret biological data. A key task in bioinformatics is identifying novel drug-target interactions (DTIs), which plays a crucial role in drug discovery. Most computational approaches treat DTI prediction as a binary classification problem, determining whether drug-target pairs interact. However, with the growing availability of drug-target binding affinity data, this binary task can be reframed as a regression problem focused on drug-target affinity (DTA). DTA quantifies the strength of drug-target binding, offering more detailed insights than DTI and serving as a valuable tool for virtual screening in drug discovery. Accurately predicting compound interactions with targets can accelerate the drug development process. In this study, we introduce a deep learning model named TC-DTA for DTA prediction, leveraging convolutional neural networks (CNN) and the encoder module of the transformer architecture. We begin by extracting raw drug SMILES strings and protein amino acid sequences from the dataset, which are then represented using various encoding methods. Subsequently, we employ CNN and the transformer's encoder module to extract features from the drug SMILES strings and protein sequences, respectively. Finally, the feature information is concatenated and input into a multi-layer perceptron to predict binding affinity scores. We evaluated our model on two benchmark DTA datasets, Davis and KIBA, comparing it with methods such as KronRLS, SimBoost, and DeepDTA. Our model, TC-DTA, outperformed these baseline methods based on evaluation metrics like Mean Squared Error (MSE), Concordance Index (CI), and Regression towards the Mean Index ( r
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mzm完成签到,获得积分10
1秒前
2秒前
聪明梦松完成签到,获得积分10
2秒前
科研通AI6应助大方抽屉采纳,获得10
2秒前
刚睡醒完成签到,获得积分10
2秒前
zhaowenxian发布了新的文献求助10
3秒前
呆萌慕灵完成签到,获得积分10
4秒前
万能图书馆应助xiang采纳,获得30
4秒前
Wuwuwu发布了新的文献求助10
4秒前
yier发布了新的文献求助10
4秒前
小何同学发布了新的文献求助10
4秒前
英姑应助sci采纳,获得10
5秒前
xzy998应助笨笨的念桃采纳,获得10
5秒前
情怀应助单薄的采萱采纳,获得10
5秒前
HahaNana发布了新的文献求助30
6秒前
八氮驳回了情怀应助
7秒前
7秒前
7秒前
乐乐应助whr采纳,获得10
8秒前
芒果草莓完成签到 ,获得积分10
9秒前
9秒前
9秒前
王来敏完成签到,获得积分10
9秒前
吃瓜落后者完成签到,获得积分10
10秒前
CC发布了新的文献求助10
10秒前
斯文败类应助初芷伊采纳,获得10
10秒前
10秒前
yzm完成签到,获得积分10
10秒前
11秒前
科研通AI5应助晓宇知音采纳,获得10
11秒前
12秒前
dawei完成签到 ,获得积分10
12秒前
12秒前
BRADp发布了新的文献求助10
12秒前
12秒前
12秒前
积极的凝珍完成签到,获得积分10
13秒前
小曲发布了新的文献求助10
13秒前
宋江他大表哥完成签到,获得积分10
13秒前
刻刻发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559758
求助须知:如何正确求助?哪些是违规求助? 3986111
关于积分的说明 12341862
捐赠科研通 3656799
什么是DOI,文献DOI怎么找? 2014599
邀请新用户注册赠送积分活动 1049307
科研通“疑难数据库(出版商)”最低求助积分说明 937635