Latent Diffusion Enhanced Rectangle Transformer for Hyperspectral Image Restoration

高光谱成像 人工智能 图像复原 计算机视觉 矩形 计算机科学 模式识别(心理学) 变压器 图像处理 图像(数学) 数学 工程类 电压 几何学 电气工程
作者
Miaoyu Li,Ying Fu,Tao Zhang,Ji Liu,Dejing Dou,Chenggang Yan,Yulun Zhang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-17
标识
DOI:10.1109/tpami.2024.3475249
摘要

The restoration of hyperspectral image (HSI) plays a pivotal role in subsequent hyperspectral image applications. Despite the remarkable capabilities of deep learning, current HSI restoration methods face challenges in effectively exploring the spatial non-local self-similarity and spectral low-rank property inherently embedded with HSIs. This paper addresses these challenges by introducing a latent diffusion enhanced rectangle Transformer for HSI restoration, tackling the non-local spatial similarity and HSI-specific latent diffusion low-rank property. In order to effectively capture non-local spatial similarity, we propose the multi-shape spatial rectangle self-attention module in both horizontal and vertical directions, enabling the model to utilize informative spatial regions for HSI restoration. Meanwhile, we propose a spectral latent diffusion enhancement module that generates the image-specific latent dictionary based on the content of HSI for low-rank vector extraction and representation. This module utilizes a diffusion model to generatively obtain representations of global low-rank vectors, thereby aligning more closely with the desired HSI. A series of comprehensive experiments were carried out on four common hyperspectral image restoration tasks, including HSI denoising, HSI super-resolution, HSI reconstruction, and HSI inpainting. The results of these experiments highlight the effectiveness of our proposed method, as demonstrated by improvements in both objective metrics and subjective visual quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大方乐荷发布了新的文献求助10
1秒前
天天快乐应助li采纳,获得10
1秒前
安白发布了新的文献求助10
1秒前
充电宝应助纪靖雁采纳,获得10
2秒前
3秒前
大模型应助哇wwwww采纳,获得10
4秒前
科研通AI5应助meng采纳,获得10
4秒前
蓝豆子发布了新的文献求助10
5秒前
慕青应助安琦采纳,获得10
6秒前
ZY发布了新的文献求助10
7秒前
无名完成签到,获得积分10
8秒前
Owen应助果汁采纳,获得10
9秒前
9秒前
粗犷的沛容完成签到,获得积分0
10秒前
12秒前
cdercder应助张力赫采纳,获得10
12秒前
haoyunlai完成签到,获得积分10
12秒前
lalala发布了新的文献求助10
12秒前
14秒前
和谐半青发布了新的文献求助20
15秒前
韧战发布了新的文献求助10
15秒前
11111完成签到 ,获得积分10
16秒前
sun发布了新的文献求助10
17秒前
隐形曼青应助安白采纳,获得10
17秒前
19秒前
meng发布了新的文献求助10
19秒前
20秒前
Jero完成签到 ,获得积分10
22秒前
Qin应助科研通管家采纳,获得10
23秒前
852应助科研通管家采纳,获得10
23秒前
慕青应助科研通管家采纳,获得10
23秒前
打打应助科研通管家采纳,获得10
23秒前
许甜甜鸭应助科研通管家采纳,获得20
23秒前
个性归尘应助科研通管家采纳,获得10
23秒前
小蘑菇应助科研通管家采纳,获得10
24秒前
田様应助科研通管家采纳,获得10
24秒前
许甜甜鸭应助科研通管家采纳,获得20
24秒前
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The phrasal lexicon 200
Solving Nonlinear Equations with Newton's Method 200
Reference Guide for Dynamic Models of HVAC Equipment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836201
求助须知:如何正确求助?哪些是违规求助? 3378568
关于积分的说明 10504924
捐赠科研通 3098152
什么是DOI,文献DOI怎么找? 1706298
邀请新用户注册赠送积分活动 820954
科研通“疑难数据库(出版商)”最低求助积分说明 772348