Reduced Biquaternion Dual-Branch Deraining U-Network via Multi-Attention Mechanism

机制(生物学) 对偶(语法数字) 计算机科学 人工智能 模式识别(心理学) 数学 物理 艺术 文学类 量子力学
作者
Shan Gai,Yi‐Qing Ni
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 6286-6301 被引量:1
标识
DOI:10.1109/tip.2025.3612841
摘要

As a prerequisite for many vision-oriented tasks, image deraining is an effective solution to alleviate performance degradation of these tasks on rainy days. In recent years, the introduction of deep learning has obtained the significant developments in deraining techniques. However, due to the inherent constraints of synthetic datasets and the insufficient robustness of network architecture designs, most existing methods are difficult to fit varied rain patterns and adapt to the transition from synthetic rainy images to real ones, ultimately resulting in unsatisfactory restoration outcomes. To address these issues, we propose a reduced biquaternion dual-branch deraining U-Network (RQ-D2UNet) for better deraining performance, which is the first attempt to apply the reduced biquaternion-valued neural network in the deraining task. The algebraic properties of reduced biquaternion (RQ) can facilitate modeling the rainy artifacts more accurately while preserving the underlying spatial structure of the background image. The comprehensive design scheme of U-shaped architecture and dual-branch structure can extract multi-scale contextual information and fully explore the mixed correlation between rain and rain-free features. Moreover, we also extend the self-attention and convolutional attention mechanisms in the RQ domain, which allow the proposed model to balance both global dependency capture and local feature extraction. Extensive experimental results on various rainy datasets (i.e., rain streak/rain-haze/raindrop/real rain), downstream vision applications (i.e., object detection and segmentation), and similar image restoration tasks (i.e., image desnowing and low-light image enhancement) demonstrate the superiority and versatility of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
过儿完成签到,获得积分10
刚刚
2秒前
Hello应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得30
2秒前
waldoe应助科研通管家采纳,获得50
2秒前
残剑月应助闲听花落采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
无极微光应助科研通管家采纳,获得20
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得150
3秒前
Stella应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得20
3秒前
烟花应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
古工楼应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
Mic应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
4秒前
hp发布了新的文献求助10
4秒前
τ涛发布了新的文献求助10
4秒前
大个应助qianqian采纳,获得10
5秒前
undertaker发布了新的文献求助10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601001
求助须知:如何正确求助?哪些是违规求助? 4686544
关于积分的说明 14844858
捐赠科研通 4679334
什么是DOI,文献DOI怎么找? 2539149
邀请新用户注册赠送积分活动 1506013
关于科研通互助平台的介绍 1471253