已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enhancing predictive accuracy in alkaline water electrolysis: A machine learning approach to the effects of trans‐diaphragm fluid flow using experimental data

振膜(声学) 电解 流量(数学) 流体力学 计算机科学 化学 机械 物理 声学 电极 电解质 物理化学 扬声器
作者
Andaç Batur Çolak
出处
期刊:Canadian Journal of Chemical Engineering [Wiley]
标识
DOI:10.1002/cjce.70016
摘要

Abstract Enhancing the efficiency of alkaline water electrolysis is critical for large‐scale green hydrogen production, yet accurately predicting hydrogen‐in‐oxygen concentrations remains a significant challenge due to the complex nonlinear interactions between electrochemical and fluid dynamic parameters. This study employs machine learning to improve the predictive accuracy of hydrogen‐in‐oxygen levels under varying trans‐diaphragm fluid flow conditions, addressing a gap in existing modelling approaches that rely primarily on theoretical or empirical methods. Five artificial neural network models were developed using experimental data from a 0.6 m single‐stack electrolyzer operating with an electrolyte. The models were trained and tested on 132 experimental data points, with 75% allocated for training and 25% for testing. The number of neurons in the hidden layer of the network models developed with a single hidden layer and the TanSig activation function was optimized by analyzing the performance of different network models. The models achieved exceptional predictive accuracy, with mean squared errors below 1.47E‐02, correlation coefficients exceeding 0.989, and margin of deviation within ±0.82% across all test cases. These findings confirm the capability of machine learning‐based predictive modelling to enhance electrolysis optimization, reduce experimental costs, and support the scalable deployment of green hydrogen production. The novel integration of machine learning in trans‐diaphragm fluid flow analysis advances predictive modelling beyond conventional techniques, offering a robust approach for industrial‐scale electrolysis system enhancement. This study primarily aims to develop accurate predictive models for hydrogen‐in‐oxygen concentrations under varying trans‐diaphragm flow conditions, addressing a critical gap in monitoring and controlling alkaline water electrolysis systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Quincy发布了新的文献求助10
2秒前
whale完成签到,获得积分10
2秒前
Ruoru完成签到,获得积分10
3秒前
3秒前
4秒前
sssssnape发布了新的文献求助10
5秒前
伶俐的溪灵完成签到,获得积分10
5秒前
6秒前
Thx发布了新的文献求助10
7秒前
gxmu6322发布了新的文献求助10
8秒前
魔幻蓉完成签到 ,获得积分10
9秒前
科科发布了新的文献求助30
9秒前
HaoyangDu完成签到,获得积分10
10秒前
10秒前
木子完成签到,获得积分10
12秒前
XuP发布了新的文献求助10
12秒前
Felix完成签到 ,获得积分10
13秒前
dyd发布了新的文献求助10
13秒前
azhen发布了新的文献求助10
14秒前
SciGPT应助欣喜的元绿采纳,获得10
14秒前
15秒前
在水一方应助十三采纳,获得10
16秒前
FashionBoy应助芋泥小天才采纳,获得10
16秒前
尹静涵完成签到 ,获得积分10
16秒前
17秒前
bkagyin应助XuP采纳,获得10
17秒前
彭于晏应助zq采纳,获得10
17秒前
17秒前
Da完成签到,获得积分10
18秒前
19秒前
充电宝应助Jiangzhibing采纳,获得10
19秒前
gxmu6322完成签到,获得积分10
19秒前
可爱的函函应助skbz采纳,获得10
19秒前
lizhiqian2024发布了新的文献求助10
20秒前
一百分发布了新的文献求助10
20秒前
不二发布了新的文献求助10
21秒前
易小杨发布了新的文献求助10
22秒前
永远完成签到,获得积分10
24秒前
一星发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5089714
求助须知:如何正确求助?哪些是违规求助? 4304338
关于积分的说明 13414052
捐赠科研通 4130011
什么是DOI,文献DOI怎么找? 2261956
邀请新用户注册赠送积分活动 1265979
关于科研通互助平台的介绍 1200641