摘要
ConspectusHydroaminoalkylation, the catalytic addition of amines to alkenes, has evolved as a powerful tool in modern synthetic chemistry, offering an atom-economic and green approach to the construction of C-C bonds. This reaction enables the direct amine functionalization of alkenes and alkynes without the need for protecting groups, directing groups, or prefunctionalization, thereby eliminating stoichiometric waste and minimizing synthetic steps. Over the past two decades, significant advances in catalyst development and mechanistic understanding have expanded the scope of hydroaminoalkylation, allowing for control over regio-, diastereo-, and enantioselectivity. In this Account, we provide a comprehensive overview of our contributions to this field, from fundamental mechanistic insights into early transition metal catalysis to the rational design of hydroaminoalkylation catalysts for small molecule and polymer functionalization. We discuss key breakthroughs, including the development of N,O-chelated early transition metal catalysts, and the use of hydroaminoalkylation in synthesis by providing direct access to valuable α- and β-alkylated amines that serve as key building blocks in pharmaceuticals, agrochemicals, and fine chemicals. The practical applications of hydroaminoalkylation extend beyond small molecule synthesis to the field of polymer chemistry, where it enables both pre- and postpolymerization amination strategies. These advances have unlocked new applications in materials science, particularly in the design of self-healing polymers, adhesives, antibacterial coatings, and polymeric binders for energy storage applications. Additionally, we demonstrate the compatibility of hydroaminoalkylation with other catalytic methods in both small molecule synthesis and polymer chemistry. Finally, we highlight remaining challenges and future opportunities, such as the development of earth-abundant metal catalysts, enantioselective hydroaminoalkylation strategies, and advanced polymer applications. By bridging the gap between small molecule synthesis and polymer chemistry, hydroaminoalkylation shows much promise as a transformative strategy for modern catalysis.