Client-Oriented Highway Construction Cost Estimation Models Using Machine Learning

作者
Fani Antoniou,Konstantinos Konstantinidis
出处
期刊:Applied sciences [MDPI AG]
卷期号:15 (18): 10237-10237
标识
DOI:10.3390/app151810237
摘要

Accurate cost estimation during the conceptual and feasibility phase of highway projects is essential for informed decision making by public contracting authorities. Existing approaches often rely on pavement cross-section descriptors, general project classifications, or quantity estimates of major work categories that are not reliably available at the early planning stage, while focusing on one or more key asset categories such as roadworks, bridges or tunnels. This study makes a novel contribution to both scientific literature and practice by proposing the first early-stage highway construction cost estimation model that explicitly incorporates roadworks, interchanges, tunnels and bridges, using only readily available or easily derived geometric characteristics. A comprehensive and practical approach was adopted by developing and comparing models across multiple machine learning (ML) methods, including Multilayer Perceptron-Artificial Neural Network (MLP-ANN), Radial Basis Function-Artificial Neural Network (RBF-ANN), Multiple Linear Regression (MLR), Random Forests (RF), Support Vector Regression (SVR), XGBoost Technique, and K-Nearest Neighbors (KNN). Results demonstrate that the MLR model based on six independent variables—mainline length, service road length, number of interchanges, total area of structures, tunnel length, and number of culverts—consistently outperformed more complex alternatives. The full MLR model, including its coefficients and standardized parameters, is provided, enabling direct replication and immediate use by contracting authorities, hence supporting more informed decisions on project funding and procurement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
蝶梦应助糖果子采纳,获得50
2秒前
wwgn发布了新的文献求助10
2秒前
3秒前
酷波er应助hongge007采纳,获得10
3秒前
3秒前
6秒前
FashionBoy应助狂野若云采纳,获得10
6秒前
108发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
qiancheng发布了新的文献求助10
7秒前
7秒前
科研通AI6.1应助li采纳,获得10
7秒前
TristanW完成签到,获得积分10
8秒前
研友_VZG7GZ应助hml123采纳,获得10
8秒前
8秒前
Jasper应助潇洒的云朵采纳,获得30
8秒前
浮生绘发布了新的文献求助10
9秒前
apple完成签到,获得积分10
9秒前
小J应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
9秒前
小J应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
Mic应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
Mic应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
Mic应助科研通管家采纳,获得10
10秒前
10秒前
Ava应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
10秒前
田様应助科研通管家采纳,获得10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743471
求助须知:如何正确求助?哪些是违规求助? 5414214
关于积分的说明 15347603
捐赠科研通 4884202
什么是DOI,文献DOI怎么找? 2625645
邀请新用户注册赠送积分活动 1574504
关于科研通互助平台的介绍 1531414