材料科学
氧化还原
离域电子
配体(生物化学)
阳极
共轭体系
密度泛函理论
聚合物
化学工程
物理化学
电极
计算化学
化学
有机化学
工程类
复合材料
受体
冶金
生物化学
作者
Kang Han,Zhenhang Zhong,Hao Zhang,Guangwan Zhang,Xuanpeng Wang,Fang Liu,Chaojiang Niu,Liqiang Mai
标识
DOI:10.1002/adma.202509022
摘要
Abstract Potassium‐ion batteries (KIBs) offer a cost‐effective, resource‐abundant alternative to lithium‐ion systems, yet the development of high‐performance anodes with adequate capacity, stability, and rate capability remains a major challenge. Here, an electronic structure engineering strategy is introduced via d‐orbital configuration optimization in a novel class of π–d conjugated coordination polymers (TM‐BTA, TM = Ni, Co, Mn). Orbital‐level and charge density analyses reveal that the metal center's electronic configuration governs metal–ligand interaction strength, thereby modulating charge delocalization and ligand redox behavior. Among the series, Ni 2 ⁺ exhibits the strongest π–d conjugation with nitrogen donor atoms, stabilizing C═N bonds and enabling highly reversible C═N/C─N transformations as the dominant redox process. This optimized coordination lowers the K⁺ adsorption energy barrier by 44% compared to Co 2 ⁺ and Mn 2 ⁺, markedly improving kinetics. As a result, Ni‐BTA delivers a high reversible capacity of 452 mAh g −1 with 99.2% retention over 500 cycles at 100 mA g −1 , and maintains 292 mAh g −1 after 4,000 cycles at 1,000 mA g −1 . In situ spectroscopy and DFT calculations reveal a ligand‐centered three‐electron redox mechanism, where nitrogen heterocycles dominate K⁺ storage and electrochemically inert Ni centers maintain structural integrity. This work establishes a general design principle for KIB anodes via d‐orbital engineering in coordination polymers.
科研通智能强力驱动
Strongly Powered by AbleSci AI