亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Membrane Electrode Assembly Design for High-Efficiency Anion Exchange Membrane Water Electrolysis

电解 电极 膜电极组件 离子 离子交换 材料科学 化学 化学工程 工程类 电解质 生物化学 有机化学 物理化学
作者
Liming Yang,Shaojun Dong,Tao Yang,Jianhe Liu,Shuang Liu,Kang Wang,Enhui Wang,Hongyang Wang,Kuo-Chih Chou,Xinmei Hou
出处
期刊:Research [AAAS00]
卷期号:8: 0907-0907 被引量:1
标识
DOI:10.34133/research.0907
摘要

Growing interest in low-cost clean hydrogen production has positioned anion exchange membrane water electrolysis (AEMWE) as a leading sustainable technology. Its appeal lies in compatibility with platinum-group metal-free catalysts, inexpensive anode flow fields, and cost-effective bipolar plates. Recent advances in AEMWE focus critically on optimizing membrane electrode assembly (MEA) design to achieve industrially viable efficiency and durability. Key progress includes component-level innovations, such as developing nonprecious metal catalysts, fabricating anion exchange membranes (AEMs) with high ionic conductivity and alkaline stability, and engineering gas diffusion layers (GDLs) with hierarchical porosity for effective mass transport. Central to improving performance is interfacial engineering within the MEA, which combines catalyst layers (CLs), AEM, and GDLs to reduce ionic/charge transfer resistance and prevent mechanical delamination. A transformative breakthrough involves ordered, gap-free electrode assembly. This approach utilizes strategies such as ionomer-bonded architectures to establish continuous ion-conducting pathways or in situ catalyst deposition directly onto AEM surfaces, creating vertically aligned triple-phase boundaries. These ordered structures maximize catalyst utilization, markedly reduce voltage losses at industrially relevant current densities, and mitigate interfacial degradation during differential-pressure operation. Future advancements require scalable manufacturing of these ordered architectures to bridge material innovations with industrial deployment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
ceeray23应助科研通管家采纳,获得10
14秒前
ceeray23应助科研通管家采纳,获得10
14秒前
ceeray23应助科研通管家采纳,获得10
14秒前
15秒前
dx完成签到,获得积分20
19秒前
粱青寒完成签到,获得积分10
22秒前
33秒前
量子星尘发布了新的文献求助10
33秒前
38秒前
40秒前
51秒前
54秒前
1分钟前
种下梧桐树完成签到 ,获得积分10
1分钟前
1分钟前
生动的煎蛋完成签到 ,获得积分10
1分钟前
su完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
拿起蜡笔小新完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
lazysheep关注了科研通微信公众号
3分钟前
3分钟前
3分钟前
3分钟前
闪闪的梦柏完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
完美世界应助gbb采纳,获得10
3分钟前
3分钟前
树洞里的刺猬完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650948
求助须知:如何正确求助?哪些是违规求助? 4782232
关于积分的说明 15052807
捐赠科研通 4809729
什么是DOI,文献DOI怎么找? 2572530
邀请新用户注册赠送积分活动 1528569
关于科研通互助平台的介绍 1487549