A novel machine learning method for evaluating the impact of emission sources on ozone formation

臭氧 污染 空气污染 环境科学 环境化学 大气科学 气象学 化学 地理 生态学 有机化学 地质学 生物
作者
Yong Cheng,Xiaofeng Huang,Yan Peng,Mengxue Tang,Bo Zhu,Shi-Yong Xia,Lingyan He
出处
期刊:Environmental Pollution [Elsevier BV]
卷期号:316: 120685-120685 被引量:25
标识
DOI:10.1016/j.envpol.2022.120685
摘要

Ambient ozone air pollution is one of the most important environmental challenges in China today, and it is particularly significant to identify pollution sources and formulate control strategies. In present study, we proposed a novel method of positive matrix factorization-SHapley Additive explanation (PMF-SHAP) for evaluating the impact of emission sources on ozone formation, which can quantify the main emission sources of ozone pollution. In this method, we first used the PMF model to identify the source of volatile organic compounds (VOCs), and then quantified various emission sources using a combination of machine learning (ML) models and the SHAP algorithm. The R2 of the optimal ML model in this method was as high as 0.96, indicating that the prediction performance was excellent. Furthermore, we explored the impact of different emission sources on ozone formation, and found that ozone formation in Shenzhen was more affected by VOCs, of which vehicle emission sources may have the greatest impact. Our results suggest that the appropriate combination of traditional models with ML models can well address environmental pollution problems. Moreover, the conclusions obtained based on the PMF-SHAP method were different from the traditional ozone formation potential (OFP) results, providing valuable clues for related mechanism studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶95完成签到,获得积分10
刚刚
1秒前
天天快乐应助如意草丛采纳,获得10
2秒前
2秒前
2秒前
ZKH发布了新的文献求助10
2秒前
隐形曼青应助赖道之采纳,获得20
2秒前
叶95发布了新的文献求助10
3秒前
2522525完成签到 ,获得积分20
3秒前
无言发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
淡然的代灵完成签到,获得积分20
5秒前
5秒前
彭于彦祖应助千寻未央采纳,获得20
5秒前
6秒前
6秒前
Lucas应助木木采纳,获得10
6秒前
6秒前
张掖发布了新的文献求助10
6秒前
6秒前
上官若男应助Leeny采纳,获得10
6秒前
晓磊发布了新的文献求助10
6秒前
Ellie发布了新的文献求助10
8秒前
千久发布了新的文献求助10
8秒前
可爱的函函应助zzzzzzzzzzzz采纳,获得10
8秒前
xin发布了新的文献求助10
8秒前
9秒前
ning发布了新的文献求助10
9秒前
123完成签到,获得积分10
9秒前
小洪帽完成签到,获得积分10
9秒前
9秒前
9秒前
ccc2发布了新的文献求助10
10秒前
Long发布了新的文献求助10
10秒前
背后归尘完成签到,获得积分10
10秒前
11秒前
传奇3应助科研雪瑞采纳,获得10
11秒前
研友_LMpo68发布了新的文献求助10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786651
求助须知:如何正确求助?哪些是违规求助? 3332319
关于积分的说明 10255052
捐赠科研通 3047657
什么是DOI,文献DOI怎么找? 1672658
邀请新用户注册赠送积分活动 801463
科研通“疑难数据库(出版商)”最低求助积分说明 760204