Assessing a soil-removed semi-empirical model for estimating leaf chlorophyll content

叶面积指数 植被(病理学) 天蓬 遥感 概括性 环境科学 叶绿素 稳健性(进化) 经验模型 土壤科学 计算机科学 植物 化学 地质学 模拟 基因 病理 心理学 有机化学 生物 心理治疗师 医学 生物化学
作者
Dong Li,Jing M. Chen,Weiguo Yu,Hengbiao Zheng,Xia Yao,Weixing Cao,Dandan Wei,Chenchao Xiao,Yan Zhu,Tao Cheng
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:282: 113284-113284 被引量:57
标识
DOI:10.1016/j.rse.2022.113284
摘要

Leaf chlorophyll content (LCC) is an important indicator of foliar nitrogen status and photosynthetic capacity. Compared to physical models, the generality of empirical models based on vegetation indices is often questioned when they are used to estimate LCC due to the influence from canopy structure, such as leaf area index (LAI). A recent study developed the LAI-insensitive chlorophyll index (LICI) and established a semi-empirical LICI-based LCC quantification model, which inherits both the robustness of physical models and the simplicity of empirical models. However, it is unclear whether such a simple model is as accurate and generic as physical models. Here, we adopted an innovative approach to disentangle the confounding effects of LAI and LCC on LICI and found that LICI was strongly correlated to LCC but only marginally sensitive to LAI. Moreover, we also found that LICI was sensitive to the soil background and thus proposed a spectral separation of soil and vegetation (3SV) algorithm, which is automatic and does not require prior information of soil background. After implementing the 3SV algorithm to remove the contributed reflectance of soil, we then obtained the contributed reflectance of vegetation (CRv). Model simulations showed that the soil background effect on the CRv-derived LICI was largely eliminated and hence this index was viewed to be soil-removed. As a result, the accuracy and generality of the soil-removed LICI-based model for LCC estimation was evaluated using comprehensive datasets from multiple vegetation types, years, sites, and observation platforms and compared to that of a MatrixVI-based physical model and a MERIS terrestrial chlorophyll index (MTCI)-based semi-empirical model. The root-mean-square error (RMSE) for LCC estimated by the soil-removed LICI-based model was 6.22–6.87 μg/cm2 for the crop datasets and 10.68 μg/cm2 for the multi-ecosystem dataset when the equivalent wet soil fraction was <0.7. Although further efforts are required to mitigate the effects of soil on the LICI-based model over sparse vegetation, this research is highly beneficial for extending its potential applications to the globe and advancing the development of an operational LCC monitoring system in the emerging satellite hyperspectral era.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
乐此不疲的猪完成签到,获得积分10
刚刚
洋洋羊发布了新的文献求助10
2秒前
听风遇见发布了新的文献求助10
2秒前
2秒前
3秒前
5秒前
归尘发布了新的文献求助10
5秒前
听雪完成签到,获得积分10
6秒前
6秒前
车梓银完成签到 ,获得积分10
7秒前
7秒前
8秒前
Roy发布了新的文献求助10
8秒前
9秒前
10秒前
一人行发布了新的文献求助10
10秒前
沉默的谷秋完成签到,获得积分10
12秒前
鸭梨发布了新的文献求助10
13秒前
14秒前
17秒前
19秒前
天真的冰蝶完成签到 ,获得积分20
19秒前
善学以致用应助Roy采纳,获得10
20秒前
20秒前
JamesPei应助axiba采纳,获得10
21秒前
21秒前
21秒前
orixero应助莱因哈特别着急采纳,获得10
21秒前
Preseverance完成签到,获得积分10
21秒前
22秒前
24秒前
一人行完成签到,获得积分10
24秒前
sunny完成签到,获得积分10
25秒前
帅帅发布了新的文献求助10
25秒前
shiyu完成签到,获得积分10
25秒前
26秒前
26秒前
落落完成签到,获得积分10
26秒前
科研通AI2S应助左西采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416974
求助须知:如何正确求助?哪些是违规求助? 4533038
关于积分的说明 14138072
捐赠科研通 4449148
什么是DOI,文献DOI怎么找? 2440600
邀请新用户注册赠送积分活动 1432430
关于科研通互助平台的介绍 1409858