Microscopic state evolution model of mixed traffic flow based on potential field theory

细胞自动机 流量(计算机网络) 模拟 离散化 微观交通流模型 计算机科学 流量(数学) 交通模拟 机械 交通生成模型 工程类 物理 数学 算法 实时计算 航空航天工程 数学分析 计算机安全 交叉口(航空)
作者
Linheng Li,Can Wang,Ying Zhang,Xu Qu,Rui Li,Zhijun Chen,Bin Ran
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:607: 128185-128185 被引量:12
标识
DOI:10.1016/j.physa.2022.128185
摘要

To investigate the microscopic-state evolution mechanism of mixed traffic flow composed of Connected and Automated Vehicles (CAVs) and Human Driven Vehicles (HDVs) in the intelligent and connected environment, this paper proposed a safety potential field-NaSch (SPF-NS) model for mixed traffic flow based on potential field theory. The model introduces the safety potential field theory into the cellular automata model, reformulates the cellular automata rules and realizes the discretization of the potential field. In addition, a comparative numerical simulation experiment between NaSch model and SPF-NS model was designed. The results show that SPF-NS model can realize the real-time change of vehicle's acceleration according to the potential field distribution, which is more precise for the actual car-following state description than NaSch model. At the same time, the road traffic flow stability under SPF-NS model is higher and the traffic capacity is increased. Besides, the microscopic-state evolution process of mixed traffic flow is emphatically studied, and the simulation experiments of different CAV penetration conditions are designed. The simulation results show that the stability of mixed traffic flow increases with the increase of CAV penetration. Compared with the HDV environment, when the CAV penetration of mixed traffic flow reaches 100%, The maximum traffic capacity of the road was increased by 2.2 times, and the congestion ratio was reduced by 96.60%. Therefore, this model can reflect the driving risk faced by vehicles in the process of car-following and simulate the microscopic-state evolution process of mixed traffic flow. The research results can provide theoretical support for future research on vehicle lane changing behavior, mixed traffic flow management and control, macroscopic state prediction in traffic flow and so on.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助mdmdd采纳,获得10
刚刚
2秒前
2秒前
桃井尤川完成签到,获得积分10
2秒前
奈文摩尔发布了新的文献求助10
4秒前
旭旭完成签到 ,获得积分10
4秒前
5秒前
聪明大炮发布了新的文献求助10
6秒前
6秒前
JingyuHuang发布了新的文献求助10
11秒前
合适台灯发布了新的文献求助10
11秒前
12秒前
大个应助Kelly采纳,获得10
12秒前
shu发布了新的文献求助10
12秒前
研友_VZG7GZ应助lqh0211采纳,获得20
14秒前
16秒前
mdmdd发布了新的文献求助10
20秒前
Re完成签到,获得积分10
20秒前
wjwless发布了新的文献求助10
21秒前
cyia-发布了新的文献求助10
21秒前
科研通AI5应助林松采纳,获得10
22秒前
柒柒_BX发布了新的文献求助10
23秒前
锅包肉完成签到 ,获得积分10
23秒前
SOBER刘晗关注了科研通微信公众号
26秒前
mdmdd完成签到,获得积分10
27秒前
30秒前
科研通AI5应助合适台灯采纳,获得10
31秒前
dopamine完成签到,获得积分10
31秒前
善良海云完成签到,获得积分10
32秒前
32秒前
我想放假完成签到 ,获得积分10
32秒前
bc举报研友_奋斗的枫求助涉嫌违规
33秒前
Chun完成签到 ,获得积分10
33秒前
小欧文完成签到,获得积分10
33秒前
所所应助曾梦采纳,获得10
34秒前
37秒前
莫失莫忘发布了新的文献求助10
37秒前
林松发布了新的文献求助10
38秒前
不想看文献完成签到 ,获得积分10
38秒前
wuyan204完成签到 ,获得积分10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782317
求助须知:如何正确求助?哪些是违规求助? 3327805
关于积分的说明 10233193
捐赠科研通 3042700
什么是DOI,文献DOI怎么找? 1670153
邀请新用户注册赠送积分活动 799658
科研通“疑难数据库(出版商)”最低求助积分说明 758876