亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhanced depression detection from speech using Quantum Whale Optimization Algorithm for feature selection

特征选择 计算机科学 人工智能 单变量 进化算法 模式识别(心理学) 分类器(UML) 特征(语言学) 过滤器组 机器学习 算法 滤波器(信号处理) 多元统计 语言学 哲学 计算机视觉
作者
Baljeet Kaur,Swati Rathi,R. K. Agrawal
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:150: 106122-106122 被引量:19
标识
DOI:10.1016/j.compbiomed.2022.106122
摘要

There is an urgent need to detect depression using a non-intrusive approach that is reliable and accurate. In this paper, a simple and efficient unimodal depression detection approach based on speech is proposed, which is non-invasive, cost-effective and computationally inexpensive. A set of spectral, temporal and spectro-temporal features is derived from the speech signal of healthy and depressed subjects. To select a minimal subset of the relevant and non-redundant speech features to detect depression, a two-phase approach based on the nature-inspired wrapper-based feature selection Quantum-based Whale Optimization Algorithm (QWOA) is proposed. Experiments are performed on the publicly available Distress Analysis Interview Corpus Wizard-of-Oz (DAICWOZ) dataset and compared with three established univariate filtering techniques for feature selection and four well-known evolutionary algorithms. The proposed model outperforms all the univariate filter feature selection techniques and the evolutionary algorithms. It has low computational complexity in comparison to traditional wrapper-based evolutionary methods. The performance of the proposed approach is superior in comparison to existing unimodal and multimodal automated depression detection models. The combination of spectral, temporal and spectro-temporal speech features gave the best result with the LDA classifier. The performance achieved with the proposed approach, in terms of F1-score for the depressed class and the non-depressed class and error is 0.846, 0.932 and 0.094 respectively. Statistical tests demonstrate that the acoustic features selected using the proposed approach are non-redundant and discriminatory. Statistical tests also establish that the performance of the proposed approach is significantly better than that of the traditional wrapper-based evolutionary methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
20秒前
hua发布了新的文献求助10
26秒前
星辰大海应助hua采纳,获得10
34秒前
瘦瘦毛豆发布了新的文献求助10
42秒前
wuqi完成签到 ,获得积分10
47秒前
苏鱼完成签到 ,获得积分10
54秒前
鬼见愁应助科研通管家采纳,获得10
1分钟前
1分钟前
hua发布了新的文献求助10
1分钟前
gszy1975完成签到,获得积分10
1分钟前
斯文败类应助hua采纳,获得10
1分钟前
ding应助周周喝粥粥采纳,获得10
2分钟前
善学以致用应助秋日思语采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科目三应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
秋日思语发布了新的文献求助10
3分钟前
3分钟前
Jasper应助alilia采纳,获得10
4分钟前
4分钟前
alilia完成签到,获得积分10
4分钟前
4分钟前
alilia发布了新的文献求助10
4分钟前
hi_traffic完成签到,获得积分10
4分钟前
5分钟前
情怀应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
鬼见愁应助瘦瘦毛豆采纳,获得10
5分钟前
传奇3应助哦哟采纳,获得10
5分钟前
6分钟前
鬼见愁应助不是吴彦祖喔采纳,获得10
6分钟前
脑洞疼应助瘦瘦毛豆采纳,获得10
6分钟前
6分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
Battery Management Systems, Volume lll: Physics-Based Methods 550
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4136456
求助须知:如何正确求助?哪些是违规求助? 3673191
关于积分的说明 11611462
捐赠科研通 3368339
什么是DOI,文献DOI怎么找? 1850450
邀请新用户注册赠送积分活动 913819
科研通“疑难数据库(出版商)”最低求助积分说明 828941