扩散
扩散过程
各向同性
统计物理学
消散
高斯分布
反向
噪音(视频)
高斯噪声
降噪
数学
应用数学
计算机科学
数学分析
物理
算法
人工智能
几何学
光学
热力学
创新扩散
量子力学
图像(数学)
知识管理
作者
Emiel Hoogeboom,Tim Salimans
出处
期刊:Cornell University - arXiv
日期:2022-01-01
被引量:7
标识
DOI:10.48550/arxiv.2209.05557
摘要
Recently, Rissanen et al., (2022) have presented a new type of diffusion process for generative modeling based on heat dissipation, or blurring, as an alternative to isotropic Gaussian diffusion. Here, we show that blurring can equivalently be defined through a Gaussian diffusion process with non-isotropic noise. In making this connection, we bridge the gap between inverse heat dissipation and denoising diffusion, and we shed light on the inductive bias that results from this modeling choice. Finally, we propose a generalized class of diffusion models that offers the best of both standard Gaussian denoising diffusion and inverse heat dissipation, which we call Blurring Diffusion Models.
科研通智能强力驱动
Strongly Powered by AbleSci AI