Efficient degradation of diclofenac by digestate-derived biochar catalyzed peroxymonosulfate oxidation: Performance, machine learning prediction, and mechanism

沼渣 生物炭 降级(电信) 催化作用 环境修复 化学 羟基化 键裂 环境化学 废水 计算机科学 污染 有机化学 环境工程 厌氧消化 环境科学 热解 电信 生物 甲烷 生态学
作者
Jingxin Liu,Hang Jia,Meng Mei,Teng Wang,Si Chen,Jinping Li
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:167: 77-88 被引量:30
标识
DOI:10.1016/j.psep.2022.09.007
摘要

Diclofenac (DCF), a widely used drug, is frequently found in natural waters, and its removal has caused extensive concern. Sulfate radical-based advanced oxidation processes are efficient for the degradation of organic pollutants, but the self-decomposition of persulfates is always sluggish and restricted. Herein, self-N doped biochar derived from food waste digestate (FWDB) was evaluated as the activator of peroxylmonosulfate (PMS) in terms of DCF degradation. The effects of several key operating variables were examined, and the results indicated that ∼93% of DCF with an initial concentration of 20 mg/L was removed at FWDB dosage of 0.3 g/L and PMS concentration of 1.0 mM. Thereafter, the machine learning method was explored to simulate and predict the DCF removal process. The reactive oxygen species participated in the reaction was identified as 1O2, and the reaction sites on FWDB were determined as graphitized carbon, CO structure, doped-N, and defective edges. Moreover, based on the identification of intermediates and products, the possible DCF destruction pathways were proposed as hydroxylation, cleavage of N−C bond, and decarboxylation. This study provided an economical and convenient heterogeneous PMS activator for remediation of organic wastewater and confirmed the feasibility of optimizing the contaminant degradation process via data mining.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
星辰大海应助叶子采纳,获得10
1秒前
高兴的无颜完成签到,获得积分20
1秒前
2秒前
hdc12138发布了新的文献求助10
2秒前
Kristal发布了新的文献求助10
2秒前
3秒前
所所应助白色采纳,获得10
4秒前
栗心完成签到,获得积分10
4秒前
4秒前
WangZY发布了新的文献求助50
5秒前
123456发布了新的文献求助20
5秒前
善学以致用应助Jirobai采纳,获得10
5秒前
1911988020发布了新的文献求助10
6秒前
童童完成签到,获得积分20
6秒前
6秒前
6秒前
7秒前
天天快乐应助泰裤辣采纳,获得10
7秒前
7秒前
orixero应助YZ采纳,获得10
7秒前
8秒前
MINGXING发布了新的文献求助10
8秒前
8秒前
Lucas应助SHADY592采纳,获得10
8秒前
酷波er应助lily采纳,获得10
8秒前
10秒前
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
橙子完成签到,获得积分10
13秒前
菠萝贝完成签到,获得积分10
14秒前
穆梦山发布了新的文献求助10
14秒前
蜗牛完成签到,获得积分10
14秒前
共享精神应助失眠耳机采纳,获得10
15秒前
15秒前
lbx发布了新的文献求助10
15秒前
荔枝面发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649271
求助须知:如何正确求助?哪些是违规求助? 4777760
关于积分的说明 15047338
捐赠科研通 4808206
什么是DOI,文献DOI怎么找? 2571314
邀请新用户注册赠送积分活动 1527861
关于科研通互助平台的介绍 1486716