亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Serial Cascaded Deep Feature Extraction-based Adaptive Attention Dilated model for Crop Recommendation Framework

计算机科学 特征(语言学) 特征提取 人工智能 模式识别(心理学) 数据挖掘 语言学 哲学
作者
D. Latha,Praveen Kumar Ramajayam
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:: 111790-111790
标识
DOI:10.1016/j.asoc.2024.111790
摘要

Effective crop farming depends on wise selection of crops. It is an essential factor that has to be fulfilled before beginning an agricultural endeavor. Conventionally, the crop that has to be grown is selected without considering the location and cultivated site's characteristics by only considering its profit and demand on the market. Choosing the best crop for the circumstances can minimize the need for additional fertilizer and water for irrigation and help in attaining enhanced crop yield. Therefore, choosing the right crop is crucial for a successful agricultural situation. Thus, a novel crop recommendation model by considering the soil and geographical conditions is developed to aid the farmers in choosing the appropriate crop for the right condition so that the overall production can be enhanced to increase the overall profit and decrease the losses faced by the farmers. At first, a certain geographical area is selected, and the ideal parameters for growing a particular plant are gathered from the standard database. Next, the deep optimal features are extracted using a Serial Cascaded network in which an autoencoder is cascaded with a "Dimensional Convolutional Neural Network (1DCNN)" from the gathered data. The obtained deep features are optimally selected using the developed Modified Movement Territory of Fire Hawk Optimizer (MMTFHO). These optimally selected features are given to the Adaptive and Attention-based Hybrid Network (AAHNet) in which "Gated Recurrent Unit (GRU), and Long Short Term Memory (LSTM)" are utilized for choosing the right crop for the provided geographical condition. The parameters in the AAHNet are optimized using the same enhanced MMTFHO algorithm for improving the precision of the appropriate crop selection process. The final prediction of crops for the given geographical condition is obtained from the AAHNet. The final or overall rating of the recommended approach regarding accuracy metrics is 96.73%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
nbtzy完成签到,获得积分10
26秒前
Criminology34应助科研通管家采纳,获得10
34秒前
LPPQBB应助科研通管家采纳,获得30
34秒前
LPPQBB应助科研通管家采纳,获得30
34秒前
科研通AI6应助科研通管家采纳,获得30
34秒前
ZanE完成签到,获得积分10
34秒前
59秒前
谢琳发布了新的文献求助10
1分钟前
1分钟前
土土发布了新的文献求助10
1分钟前
1分钟前
楠楠2001完成签到 ,获得积分10
1分钟前
菲菲完成签到 ,获得积分10
1分钟前
土土完成签到,获得积分10
1分钟前
outlast完成签到,获得积分10
2分钟前
2分钟前
sherrydj发布了新的文献求助10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
LPPQBB应助科研通管家采纳,获得30
2分钟前
可久斯基完成签到 ,获得积分10
2分钟前
sherrydj完成签到,获得积分10
2分钟前
xinxin完成签到,获得积分10
2分钟前
2分钟前
luster发布了新的文献求助10
2分钟前
2分钟前
Mingyue123发布了新的文献求助10
2分钟前
Mingyue123完成签到,获得积分10
3分钟前
在水一方应助null采纳,获得10
3分钟前
3分钟前
科研通AI6应助皆可采纳,获得10
3分钟前
wqwweqwe发布了新的文献求助10
3分钟前
wqwweqwe完成签到,获得积分10
3分钟前
领导范儿应助魏你大爷采纳,获得10
3分钟前
3分钟前
魏你大爷完成签到,获得积分10
3分钟前
3分钟前
魏你大爷发布了新的文献求助10
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356874
求助须知:如何正确求助?哪些是违规求助? 4488549
关于积分的说明 13972332
捐赠科研通 4389561
什么是DOI,文献DOI怎么找? 2411651
邀请新用户注册赠送积分活动 1404196
关于科研通互助平台的介绍 1378228