Serial Cascaded Deep Feature Extraction-based Adaptive Attention Dilated model for Crop Recommendation Framework

计算机科学 特征(语言学) 特征提取 人工智能 模式识别(心理学) 数据挖掘 哲学 语言学
作者
D. Latha,Praveen Kumar Ramajayam
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:: 111790-111790
标识
DOI:10.1016/j.asoc.2024.111790
摘要

Effective crop farming depends on wise selection of crops. It is an essential factor that has to be fulfilled before beginning an agricultural endeavor. Conventionally, the crop that has to be grown is selected without considering the location and cultivated site's characteristics by only considering its profit and demand on the market. Choosing the best crop for the circumstances can minimize the need for additional fertilizer and water for irrigation and help in attaining enhanced crop yield. Therefore, choosing the right crop is crucial for a successful agricultural situation. Thus, a novel crop recommendation model by considering the soil and geographical conditions is developed to aid the farmers in choosing the appropriate crop for the right condition so that the overall production can be enhanced to increase the overall profit and decrease the losses faced by the farmers. At first, a certain geographical area is selected, and the ideal parameters for growing a particular plant are gathered from the standard database. Next, the deep optimal features are extracted using a Serial Cascaded network in which an autoencoder is cascaded with a "Dimensional Convolutional Neural Network (1DCNN)" from the gathered data. The obtained deep features are optimally selected using the developed Modified Movement Territory of Fire Hawk Optimizer (MMTFHO). These optimally selected features are given to the Adaptive and Attention-based Hybrid Network (AAHNet) in which "Gated Recurrent Unit (GRU), and Long Short Term Memory (LSTM)" are utilized for choosing the right crop for the provided geographical condition. The parameters in the AAHNet are optimized using the same enhanced MMTFHO algorithm for improving the precision of the appropriate crop selection process. The final prediction of crops for the given geographical condition is obtained from the AAHNet. The final or overall rating of the recommended approach regarding accuracy metrics is 96.73%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小米粒完成签到,获得积分10
1秒前
虚幻大象完成签到,获得积分10
3秒前
3秒前
雾里看花完成签到,获得积分10
4秒前
记忆里的阳光完成签到,获得积分10
4秒前
Transformer完成签到,获得积分10
6秒前
昏睡的蟠桃应助买桃子去采纳,获得20
6秒前
丫丫发布了新的文献求助10
6秒前
7秒前
花开不败完成签到,获得积分10
7秒前
香蕉觅云应助虚幻大象采纳,获得10
7秒前
孙煜完成签到,获得积分10
8秒前
老刘完成签到,获得积分10
9秒前
Hailin发布了新的文献求助10
11秒前
11秒前
研究水合物的小白完成签到 ,获得积分10
11秒前
JamesPei应助L-g-b采纳,获得10
14秒前
你好发布了新的文献求助10
15秒前
15秒前
崔洪瑞发布了新的文献求助10
15秒前
xxxxxxlp发布了新的文献求助10
17秒前
JQKing完成签到,获得积分10
17秒前
王大禹发布了新的文献求助10
21秒前
是个i人完成签到,获得积分10
23秒前
zz发布了新的文献求助10
23秒前
23秒前
27秒前
嘉嘉完成签到 ,获得积分10
27秒前
27秒前
dd完成签到,获得积分10
28秒前
Chen发布了新的文献求助10
28秒前
Ava应助Captain采纳,获得10
30秒前
31秒前
笨笨凡松发布了新的文献求助10
32秒前
清脆松发布了新的文献求助20
33秒前
34秒前
liuxl完成签到,获得积分10
35秒前
35秒前
Gino发布了新的文献求助30
36秒前
38秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789592
求助须知:如何正确求助?哪些是违规求助? 3334534
关于积分的说明 10270460
捐赠科研通 3050998
什么是DOI,文献DOI怎么找? 1674381
邀请新用户注册赠送积分活动 802549
科研通“疑难数据库(出版商)”最低求助积分说明 760761