A bearing fault diagnosis method based on M-SSCNN and M-LR attention mechanism

方位(导航) 断层(地质) Softmax函数 联营 稳健性(进化) 模式识别(心理学) 分割 卷积神经网络 残余物 卷积(计算机科学) 数据挖掘 地质学 计算机科学 人工神经网络 地震学 人工智能 算法 生物化学 化学 基因
作者
Yonghua Li,Zhihui Men,Xiaoning Bai,Qing Xia,Dongxu Zhang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:1
标识
DOI:10.1177/14759217241244477
摘要

Bearing fault diagnosis is vital for mechanical maintenance and fault prediction. It ensures equipment safety, extends lifespan, reduces maintenance costs, and improves production efficiency. Nevertheless, it should be acknowledged that some existing diagnostic methods have achieved high accuracy rates in certain scenarios. However, the challenge lies in their limited generalization capabilities, which can lead to reduced accuracy when applied to diverse or unseen conditions. In this study, we proposed a new bearing fault diagnosis method to address the issue of low accuracy caused by the inadequate generalization of models in the process of rolling bearing fault diagnosis. The method is based on a multi-scale sliding convolution neural network and multi-level residual attention mechanism, the model exhibits high accuracy, strong generalization capability, and lightweight structure. Firstly, the time domain signal of the bearing vibration is converted into a two-dimensional time–frequency map, and the image is pixel-segmented using superpixel segmentation techniques. Next, a multi-scale parallel convolution approach is used to extract features to improve the adaptability and robustness of the model to objects of different sizes and scales. Sliding convolution is used instead of pooling to avoid the problem of feature loss caused by maximum pooling and average pooling. A multi-level attention mechanism is then introduced for all stacked channels to focus on the more important and critical information of the module, and residual connections are added to prevent degradation of the network performance. Finally, the proposed method is passed through the fully connected layer for classification using the Softmax classifier. Experimental verification using public datasets and experimental data of our research group shows that the proposed method has better performance than the existing diagnostic methods and diagnostic models. The proposed method offers an advanced and innovative solution in the domain of bearing fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lhs完成签到,获得积分10
刚刚
科研通AI5应助tdtk采纳,获得10
2秒前
4秒前
Akim应助地三鲜采纳,获得10
4秒前
xiaoliu完成签到,获得积分10
5秒前
斯文败类应助Aurora采纳,获得10
5秒前
7秒前
乌冬面发布了新的文献求助10
9秒前
10秒前
11秒前
15秒前
fragile完成签到,获得积分10
16秒前
namelorna发布了新的文献求助10
17秒前
周钰波完成签到,获得积分20
17秒前
研友_VZG7GZ应助Aurora采纳,获得10
17秒前
lhs发布了新的文献求助10
18秒前
乐乐应助gy采纳,获得10
19秒前
lht完成签到 ,获得积分10
21秒前
23秒前
丘比特应助liuwenjie采纳,获得10
26秒前
传奇3应助lhs采纳,获得10
27秒前
27秒前
27秒前
Aurora完成签到,获得积分10
28秒前
wyby发布了新的文献求助10
28秒前
ygwu0946完成签到,获得积分10
29秒前
29秒前
黄橙子完成签到 ,获得积分10
30秒前
江雯君发布了新的文献求助10
32秒前
wanhe发布了新的文献求助10
32秒前
aaaa完成签到,获得积分10
33秒前
tdtk发布了新的文献求助10
34秒前
wyby完成签到,获得积分20
35秒前
38秒前
zzyh完成签到,获得积分10
40秒前
namelorna完成签到,获得积分10
41秒前
地三鲜发布了新的文献求助10
43秒前
研友_Y59785应助金晓采纳,获得10
44秒前
是三石啊完成签到 ,获得积分10
44秒前
wanhe完成签到,获得积分10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779843
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222351
捐赠科研通 3040435
什么是DOI,文献DOI怎么找? 1668835
邀请新用户注册赠送积分活动 798788
科研通“疑难数据库(出版商)”最低求助积分说明 758563