Prediction of sepsis among patients with major trauma using artificial intelligence: a multicenter validated cohort study

医学 格拉斯哥昏迷指数 队列 败血症 逻辑回归 损伤严重程度评分 死亡率 队列研究 回顾性队列研究 前瞻性队列研究 内科学 急诊医学 机器学习 毒物控制 外科 伤害预防 计算机科学
作者
Baisheng Sun,M. Lei,Li Wang,Xiaoli Wang,Xiaoming Li,Zhi Mao,Hongjun Kang,Hui Liu,Shiying Sun,Feihu Zhou
出处
期刊:International Journal of Surgery [Wolters Kluwer]
被引量:8
标识
DOI:10.1097/js9.0000000000001866
摘要

Background: Sepsis remains a significant challenge in patients with major trauma in the ICU. Early detection and treatment are crucial for improving outcomes and reducing mortality rates. Nonetheless, clinical tools for predicting sepsis among patients with major trauma are limited. This study aimed to develop and validate an artificial intelligence (AI) platform for predicting the risk of sepsis among patients with major trauma. Methods: This study involved 961 patients, with prospective analysis of data from 244 patients with major trauma at our hospital and retrospective analysis of data from 717 patients extracted from a database in the United States. The patients from our hospital constituted the model development cohort, and the patients from the database constituted the external validation cohort. The patients in the model development cohort were randomly divided into a training cohort and an internal validation cohort at a ratio of 8:2. The machine learning algorithms used to train models included logistic regression (LR), decision tree (DT), extreme gradient boosting machine (eXGBM), neural network (NN), random forest (RF), and light gradient boosting machine (LightGBM). Results: The incidence of sepsis for the model development cohort was 43.44%. Twelve predictors, including gender, abdominal trauma, open trauma, red blood cell count, heart rate, respiratory rate, injury severity score, sequential organ failure assessment score, Glasgow coma scale, smoking, total protein concentrations, and hematocrit, were used as features in the final model. Internal validation showed that the NN model had the highest area under the curve (AUC) of 0.932 (95% CI: 0.917-0.948), followed by the LightGBM and eXGBM models with AUCs of 0.913 (95% CI: 0.883–0.930) and 0.912 (95% CI: 0.880–0.935), respectively. In the external validation cohort, the eXGBM model (AUC: 0.891, 95% CI: 0.866-0.914) had the highest AUC value, followed by the LightGBM model (AUC: 0.886, 95% CI: 0.860–0.906), and the AUC value of the NN model was only 0.787 (95% CI: 0.751-0.829). Considering the predictive performance for both the internal and external validation cohorts, the LightGBM model had the highest score of 82, followed by the eXGBM (81) and NN (76) models. Thus, the LightGBM was emerged as the optimal model, and it was deployed online as an AI application. Conclusions: This study develops and validates an AI application to effectively assess the susceptibility of patients with major trauma to sepsis. The AI application equips healthcare professionals with a valuable tool to promptly identify individuals at high risk of developing sepsis. This will facilitate clinical decision-making and enable early intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小二郎应助徐春悦采纳,获得10
1秒前
孙燕应助王立为采纳,获得10
1秒前
潇洒的诗桃应助王立为采纳,获得10
1秒前
3秒前
上官若男应助yue957采纳,获得10
3秒前
琪琪完成签到,获得积分10
3秒前
三三发布了新的文献求助10
3秒前
常泽洋122发布了新的文献求助10
5秒前
隐形曼青应助香蕉乐萱采纳,获得10
5秒前
副掌门发布了新的文献求助10
6秒前
yaoyaoyao完成签到 ,获得积分10
6秒前
7秒前
热心丹南完成签到,获得积分10
8秒前
liam发布了新的文献求助10
8秒前
galen完成签到,获得积分10
9秒前
科研通AI5应助清爽花卷采纳,获得10
9秒前
12秒前
科研通AI5应助zhangweiji采纳,获得10
12秒前
热心丹南发布了新的文献求助10
12秒前
cwj813520发布了新的文献求助10
13秒前
科研通AI5应助酸奶采纳,获得10
15秒前
芒果完成签到,获得积分10
15秒前
16秒前
香蕉觅云应助热心丹南采纳,获得10
17秒前
17秒前
火星上仰完成签到,获得积分10
19秒前
今后应助罗山柳采纳,获得10
21秒前
21秒前
Valentina发布了新的文献求助10
22秒前
22秒前
yue957完成签到,获得积分10
22秒前
galen发布了新的文献求助10
24秒前
25秒前
徐春悦发布了新的文献求助10
25秒前
26秒前
叶子发布了新的文献求助10
27秒前
李健春发布了新的文献求助10
29秒前
Ava应助a涵采纳,获得10
29秒前
lalala发布了新的文献求助10
30秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842655
求助须知:如何正确求助?哪些是违规求助? 3384676
关于积分的说明 10536643
捐赠科研通 3105227
什么是DOI,文献DOI怎么找? 1710094
邀请新用户注册赠送积分活动 823493
科研通“疑难数据库(出版商)”最低求助积分说明 774110