A Convolutional-Transformer based Approach for Dynamic Gesture Recognition of Data Gloves

计算机科学 手势 手势识别 人工智能 特征提取 分类器(UML) 卷积神经网络 模式识别(心理学) 变压器 可穿戴计算机 计算机视觉 有线手套 语音识别 工程类 嵌入式系统 电气工程 电压
作者
Yingzhe Tang,Mingzhang Pan,Hongqi Li,Xinxin Cao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-13
标识
DOI:10.1109/tim.2024.3400361
摘要

Data glove-based dynamic gestures contain rich human motion intentions, which is reliant on the hand body information that comes from multi-individual sensors attached. However, present gesture recognition with such wearable sensor devices tends to depend heavily on the handcrafted features and ignore the critical channel and inter-feature information. To address this problem, a novel convolutional-transformer based recognition architecture termed as the spatial-temporal feature-attention transformer network (STFTnet) is proposed in this study. Specifically, the acquired data from multiple sensors of the data glove are sequentially processed with a spatial-temporal sensor features embedding branch, a transformer encoder block, and the final gesture classifier. A multi-sensor feature attention (MFA) block and an improved depth-separable convolution block of the first branch are developed to effectively extract low-level spatial and local temporal features, while the multi-head self-attention based transformer block further concentrating on capturing the global context information. The gesture classifier is used to achieve the final classification successfully. To evaluate the efficacy of the proposed approach, extensive experiments are conducted on two publicly available datasets of pelvic closed reduction action dataset and UC2017 Hand Gesture Dataset, and one self-built gesture control command dataset. Compared to the other state-of-the-art deep learning-based algorithms, an average accuracy of 95.75%, 100%, 99.72% and recognition time of 10.71ms, 11.92ms, and 11.24ms has been achieved. These results indicate that the proposed network effectively enhances the recognition performance of the dynamic gesture of data gloves, while fulfilling requirements of the further real-time application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚定访梦发布了新的文献求助10
刚刚
刚刚
浮游应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得30
1秒前
missme应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
missme应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
2秒前
崔win发布了新的文献求助30
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
研友_5Z46A5应助科研通管家采纳,获得10
2秒前
Murray完成签到,获得积分10
2秒前
打打应助陈cxz采纳,获得30
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
123发布了新的文献求助10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
3秒前
yoke完成签到,获得积分10
5秒前
852应助硕shuo采纳,获得10
5秒前
5秒前
祝你开心完成签到,获得积分10
5秒前
zengyuewei发布了新的文献求助10
6秒前
慕青应助hdanile采纳,获得10
8秒前
9秒前
houyan发布了新的文献求助10
10秒前
嗯嗯完成签到,获得积分10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585774
求助须知:如何正确求助?哪些是违规求助? 4002441
关于积分的说明 12390234
捐赠科研通 3678492
什么是DOI,文献DOI怎么找? 2027418
邀请新用户注册赠送积分活动 1060929
科研通“疑难数据库(出版商)”最低求助积分说明 947342