Data-driven diagnosis of high temperature PEM fuel cells based on the electrochemical impedance spectroscopy: Robustness improvement and evaluation

介电谱 稳健性(进化) 质子交换膜燃料电池 电阻抗 材料科学 电化学 燃料电池 核工程 分析化学(期刊) 计算机科学 汽车工程 化学工程 电气工程 化学 工程类 色谱法 电极 基因 生物化学 物理化学
作者
Dan Yu,Xingjun Li,Samuel Simon Araya,Simon Lennart Sahlin,Vincenzo Liso
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:96: 544-558 被引量:8
标识
DOI:10.1016/j.jechem.2024.05.014
摘要

Utilizing machine learning techniques for data-driven diagnosis of high temperature PEM fuel cells is beneficial and meaningful to the system durability. Nevertheless, ensuring the robustness of diagnosis remains a critical and challenging task in real application. To enhance the robustness of diagnosis and achieve a more thorough evaluation of diagnostic performance, a robust diagnostic procedure based on electrochemical impedance spectroscopy (EIS) and a new method for evaluation of the diagnosis robustness was proposed and investigated in this work. To improve the diagnosis robustness: (1) the degradation mechanism of different faults in the high temperature PEM fuel cell was first analyzed via the distribution of relaxation time of EIS to determine the equivalent circuit model (ECM) with better interpretability, simplicity and accuracy; (2) the feature extraction was implemented on the identified parameters of the ECM and extra attention was paid to distinguishing between the long-term normal degradation and other faults; (3) a Siamese Network was adopted to get features with higher robustness in a new embedding. The diagnosis was conducted using 6 classic classification algorithms—support vector machine (SVM), K-nearest neighbor (KNN), logistic regression (LR), decision tree (DT), random forest (RF), and Naive Bayes employing a dataset comprising a total of 1935 collected EIS. To evaluate the robustness of trained models: (1) different levels of errors were added to the features for performance evaluation; (2) a robustness coefficient (Roubust_C) was defined for a quantified and explicit evaluation of the diagnosis robustness. The diagnostic models employing the proposed feature extraction method can not only achieve the higher performance of around 100% but also higher robustness for diagnosis models. Despite the initial performance being similar, the KNN demonstrated a superior robustness after feature selection and re-embedding by triplet-loss method, which suggests the necessity of robustness evaluation for the machine learning models and the effectiveness of the defined robustness coefficient. This work hopes to give new insights to the robust diagnosis of high temperature PEM fuel cells and more comprehensive performance evaluation of the data-driven method for diagnostic application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风_feng发布了新的文献求助10
1秒前
jinzhen完成签到,获得积分20
2秒前
nnnn发布了新的文献求助10
3秒前
马尔斯发布了新的文献求助10
4秒前
CipherSage应助嘻嘻哈哈采纳,获得10
5秒前
Elinor完成签到,获得积分20
5秒前
5秒前
xliiii完成签到,获得积分10
6秒前
淡淡的雪完成签到,获得积分10
7秒前
qiao应助核桃采纳,获得20
8秒前
王小雨完成签到 ,获得积分10
9秒前
NikiJu完成签到,获得积分10
13秒前
14秒前
青雉发布了新的文献求助10
14秒前
嘻嘻哈哈发布了新的文献求助10
19秒前
sihui完成签到,获得积分10
21秒前
微笑的秀儿完成签到 ,获得积分10
23秒前
24秒前
香蕉觅云应助黄婷婷采纳,获得10
25秒前
sihui发布了新的文献求助20
26秒前
28秒前
30秒前
30秒前
仲乔妹完成签到,获得积分10
34秒前
第八大洋发布了新的文献求助10
36秒前
37秒前
洁净的静芙完成签到 ,获得积分10
37秒前
攀攀完成签到,获得积分10
38秒前
网络药理学完成签到,获得积分10
41秒前
41秒前
共享精神应助第八大洋采纳,获得10
41秒前
脑洞疼应助桂花引采纳,获得10
41秒前
小田发布了新的文献求助10
42秒前
43秒前
机灵飞兰发布了新的文献求助10
44秒前
曾经小伙完成签到 ,获得积分10
44秒前
46秒前
Hathaway发布了新的文献求助10
46秒前
机灵飞兰完成签到,获得积分10
50秒前
有一套发布了新的文献求助10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779780
求助须知:如何正确求助?哪些是违规求助? 3325232
关于积分的说明 10222026
捐赠科研通 3040376
什么是DOI,文献DOI怎么找? 1668788
邀请新用户注册赠送积分活动 798776
科研通“疑难数据库(出版商)”最低求助积分说明 758549