亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Corporate governance and innovation: a predictive modeling approach using machine learning

公司治理 业务 过程管理 计算机科学 管理 经济 财务
作者
Leonardo Henrique Lima de Pilla,Elaine Barbosa Couto Silveira,Fábio Caldieraro,Alketa Peci,Ishani Aggarwal
出处
期刊:R & D Management [Wiley]
标识
DOI:10.1111/radm.12703
摘要

The examination of the associations between internal corporate governance (CG) mechanisms and innovation faces challenges due to nonlinear patterns and complex interactions. Consequently, existing literature rarely reaches a consensus on the directions or strengths of these relationships. Furthermore, to investigate the CG–innovation association, prior research has predominantly relied on explanatory modeling, which involves applying statistical models to data to test correlational or causal hypotheses about theoretical constructs. These are the reasons why it remains unclear whether internal CG mechanisms, when considered collectively as an extensive array of interconnected variables, offer valuable insights for accurately predicting innovation. To address this gap, we analyze a dataset of research and development (R&D) projects from the Brazilian electricity sector by employing predictive modeling, which entails using statistical models or data mining algorithms to predict new observations, particularly using supervised machine learning (ML) methods. Our study demonstrates that a comprehensive set of variables representing internal CG mechanisms significantly enhances the predictive capabilities of ML algorithms for innovation. Furthermore, we illustrate how ML can illuminate nonlinear and non‐monotonic patterns, and interactions among variables, in the CG–innovation relationship. Our contribution to the literature encompasses three key aspects: introducing a predictive modeling approach to the discourse on the role of CG in innovation attainment through R&D endeavors, which can complement and enrich existing explanatory research; investigating non‐linear and non‐monotonic relationships, as well as interactions, in innovation prediction; and affirming the emerging body of literature that recognizes supervised ML as a valuable tool accessible to management researchers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啥时候吃火锅完成签到 ,获得积分0
1分钟前
1分钟前
卡卡咧咧发布了新的文献求助10
1分钟前
无花果应助hugeyoung采纳,获得10
1分钟前
庾亦绿发布了新的文献求助30
1分钟前
1分钟前
烟花应助科研通管家采纳,获得100
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
zz发布了新的文献求助10
1分钟前
1分钟前
cyx发布了新的文献求助10
1分钟前
852应助cyx采纳,获得10
1分钟前
Akim应助zz采纳,获得10
1分钟前
庾亦绿完成签到,获得积分10
2分钟前
与共完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
胖胖猪完成签到,获得积分10
3分钟前
无情的友容完成签到 ,获得积分10
4分钟前
4分钟前
猕猴桃猴发布了新的文献求助10
5分钟前
7分钟前
nnnnnn发布了新的文献求助10
7分钟前
科研通AI5应助lll采纳,获得10
7分钟前
nnnnnn完成签到,获得积分10
7分钟前
7分钟前
lll发布了新的文献求助10
7分钟前
研友_VZG7GZ应助jeff采纳,获得10
7分钟前
7分钟前
cyx发布了新的文献求助10
7分钟前
8分钟前
jeff发布了新的文献求助10
8分钟前
丘比特应助jeff采纳,获得20
8分钟前
8分钟前
白玫瑰发布了新的文献求助10
8分钟前
8分钟前
8分钟前
Owen应助妩媚的夏烟采纳,获得10
8分钟前
香蕉觅云应助妩媚的幼丝采纳,获得10
8分钟前
9分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779128
求助须知:如何正确求助?哪些是违规求助? 3324759
关于积分的说明 10219855
捐赠科研通 3039890
什么是DOI,文献DOI怎么找? 1668476
邀请新用户注册赠送积分活动 798658
科研通“疑难数据库(出版商)”最低求助积分说明 758503