Decentralized Online Order Fulfillment in Omni-Channel Retailers

订单(交换) 业务 频道(广播) 马尔可夫决策过程 定量配给 运筹学 可解释性 过程(计算) 计算机科学 马尔可夫过程 电信 经济 数学 人工智能 财务 医疗保健 统计 经济增长 操作系统
作者
Opher Baron,André A. Ciré,Sinem Savaşer
出处
期刊:Production and Operations Management [Wiley]
卷期号:33 (8): 1719-1738
标识
DOI:10.1177/10591478241255066
摘要

We consider an order fulfillment problem of an omni-channel retailer that ships online orders from its distribution center (DC) and brick-and-mortar stores. Stores use their local information, not observed by the retailer, that can lead them to accept or reject fulfillment requests of items in an online order. We investigate the problem of sequencing requests to stores and inventory rationing decisions at the DC to minimize expected costs under uncertain store acceptance behavior and when items are indistinguishable in terms of shipping. First, under the scenario that stores are used only when the DC has insufficient inventory, we propose a Markov Decision Process formulation and analyze the performance of myopic policies that are preferable because of their interpretability. We show that the performance rate of a myopic approach that orders stores by cost only depends on the number of items in an order, which is small in practice. We also determine conditions for the range of acceptance probabilities for the myopic policy to be optimal for small-sized orders. Using optimality conditions for a special case of the problem, we develop an adaptive variant of the myopic policy, and propose a new degree-based strategy that balances shipping costs and acceptance probabilities. Numerical testing suggests that the best-performing sequencing policy is within 1% of optimality on average. Moreover, using two years of data from a large omni-channel retailer in North America, we observe that adaptive policies, albeit more complex, are beneficial in reducing costs and split deliveries if acceptance rates can be estimated accurately. Second, we determine when the retailer should ship from stores or ration the inventory at the DC. We show that for single-item orders, the optimal policy has a threshold structure, where, remarkably, the highest priority region is also subject to rationing. We then consider the novel multi-unit-single-item rationing problem, and leverage the structure of the single-unit model to develop a heuristic. We numerically establish the efficacy of rationing models and our heuristic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小代完成签到,获得积分10
1秒前
QiongBai520发布了新的文献求助50
1秒前
科研助手6应助帅气凝云采纳,获得10
1秒前
慕容迎松发布了新的文献求助10
1秒前
3秒前
yangman发布了新的文献求助50
4秒前
乔治韦斯莱完成签到 ,获得积分10
5秒前
水菜泽子关注了科研通微信公众号
5秒前
Jro完成签到 ,获得积分10
6秒前
6秒前
顾矜应助摩根采纳,获得10
7秒前
柠檬加冰发布了新的文献求助10
8秒前
帅气凝云完成签到,获得积分10
8秒前
10秒前
11秒前
cy完成签到 ,获得积分10
12秒前
Hello应助科研通管家采纳,获得10
13秒前
残幻应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
卡卡西应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
残幻应助科研通管家采纳,获得10
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
IMxYang应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
星辰大海应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
非而者厚应助科研通管家采纳,获得10
15秒前
非而者厚应助科研通管家采纳,获得10
15秒前
卡卡西应助科研通管家采纳,获得20
15秒前
我是老大应助feaxi采纳,获得30
15秒前
16秒前
17秒前
深情安青应助花城采纳,获得10
18秒前
领导范儿应助盼夏采纳,获得10
18秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816929
求助须知:如何正确求助?哪些是违规求助? 3360303
关于积分的说明 10407548
捐赠科研通 3078290
什么是DOI,文献DOI怎么找? 1690694
邀请新用户注册赠送积分活动 813990
科研通“疑难数据库(出版商)”最低求助积分说明 767958