HeMTAN: Hybrid task-adapted experts-based multi-task attention network for unseen compound fault decoupling diagnosis of rotating machinery

计算机科学 人工智能 解耦(概率) 断层(地质) 任务(项目管理) 分类器(UML) 人工神经网络 机器学习 模式识别(心理学) 数据挖掘 控制工程 工程类 地质学 地震学 系统工程
作者
Jimeng Li,Wei Wang,Sai Zhong,Zong Meng,Lixiao Cao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:252: 124189-124189 被引量:6
标识
DOI:10.1016/j.eswa.2024.124189
摘要

In a rotating machinery system, a single fault of one component often causes damage to other related components, thus inducing compound faults. Without compound fault data to train intelligent models, the realization of decoupling diagnosis and accurate identification of unseen compound faults is not only of great practical significance for the safety management of equipment operation and maintenance, but also remains a challenging topic. Considering some shortcomings in the current intelligent diagnosis of compound faults, as well as the relatedness and difference between different fault features in compound fault signals, a hybrid task-adapted experts-based multi-task attention network (HeMTAN) model is investigated in this paper, which can be used for identify single faults and unseen compound faults in mechanical transmission systems. Firstly, variational mode decomposition is combined with Hilbert-Huang transform to obtain time–frequency graphs of time series signal as model input, so as to better characterize different fault features. Secondly, a hybrid task-adapted expert module is designed to extract the common and some private feature information of different learning tasks from different multi-perspective, and then the important information related to the specific learning task is further mined by the constructed private feature attention-based densely connected module. Finally, the diagnosis results can be obtained by fusing the outputs of the classifier of the two learning tasks. The performance of the investigated HeMTAN model is analyzed by the gearbox compound fault dataset and rolling bearing compound fault dataset, and the results demonstrate that the investigated HEMTAN method has significantly improved diagnosis accuracy and generalization performance
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nuyoah完成签到,获得积分20
1秒前
Dandelion完成签到,获得积分10
3秒前
yang完成签到,获得积分10
4秒前
欣慰雪巧完成签到 ,获得积分10
6秒前
REBECCA完成签到 ,获得积分10
6秒前
8秒前
科研通AI5应助LUMOS采纳,获得30
9秒前
9秒前
汉堡包应助卿年采纳,获得10
10秒前
kk完成签到,获得积分10
11秒前
11秒前
13秒前
yoyo20012623发布了新的文献求助10
14秒前
kk发布了新的文献求助10
14秒前
ly0000发布了新的文献求助20
15秒前
Ava应助endlessloop采纳,获得10
16秒前
ding应助Suniex采纳,获得10
17秒前
哈哈一笑完成签到,获得积分10
17秒前
18秒前
Dream发布了新的文献求助10
18秒前
彭于晏应助赐梦采纳,获得10
21秒前
李振博完成签到 ,获得积分10
24秒前
24秒前
研友_VZG7GZ应助guoguo采纳,获得10
25秒前
仇育辉完成签到,获得积分10
26秒前
26秒前
29秒前
Suniex发布了新的文献求助10
30秒前
yang完成签到,获得积分10
30秒前
yuexu发布了新的文献求助50
30秒前
32秒前
34秒前
35秒前
情怀应助雾岛少帅翔掌门采纳,获得10
35秒前
无奈大树发布了新的文献求助10
35秒前
lw发布了新的文献求助10
36秒前
执着尔竹完成签到,获得积分10
37秒前
赐梦发布了新的文献求助10
38秒前
初余发布了新的文献求助10
38秒前
程大大大教授完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4777811
求助须知:如何正确求助?哪些是违规求助? 4108948
关于积分的说明 12710755
捐赠科研通 3830833
什么是DOI,文献DOI怎么找? 2113107
邀请新用户注册赠送积分活动 1136684
关于科研通互助平台的介绍 1020727