A Neural Network Model for K(λ) Retrieval and Application to Global Kpar Monitoring

人工神经网络 计算机科学 计算生物学 人工智能 生物
作者
Jun Chen,Yuanli Zhu,Yongsheng Wu,Tingwei Cui,Joji Ishizaka,Yongtao Ju
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:10 (6): e0127514-e0127514 被引量:12
标识
DOI:10.1371/journal.pone.0127514
摘要

Accurate estimation of diffuse attenuation coefficients in the visible wavelengths Kd(λ) from remotely sensed data is particularly challenging in global oceanic and coastal waters. The objectives of the present study are to evaluate the applicability of a semi-analytical Kd(λ) retrieval model (SAKM) and Jamet's neural network model (JNNM), and then develop a new neural network Kd(λ) retrieval model (NNKM). Based on the comparison of Kd(λ) predicted by these models with in situ measurements taken from the global oceanic and coastal waters, all of the NNKM, SAKM, and JNNM models work well in Kd(λ) retrievals, but the NNKM model works more stable and accurate than both SAKM and JNNM models. The near-infrared band-based and shortwave infrared band-based combined model is used to remove the atmospheric effects on MODIS data. The Kd(λ) data was determined from the atmospheric corrected MODIS data using the NNKM, JNNM, and SAKM models. The results show that the NNKM model produces <30% uncertainty in deriving Kd(λ) from global oceanic and coastal waters, which is 4.88-17.18% more accurate than SAKM and JNNM models. Furthermore, we employ an empirical approach to calculate Kpar from the NNKM model-derived diffuse attenuation coefficient at visible bands (443, 488, 555, and 667 nm). The results show that our model presents a satisfactory performance in deriving Kpar from the global oceanic and coastal waters with 20.2% uncertainty. The Kpar are quantified from MODIS data atmospheric correction using our model. Comparing with field measurements, our model produces ~31.0% uncertainty in deriving Kpar from Bohai Sea. Finally, the applicability of our model for general oceanographic studies is briefly illuminated by applying it to climatological monthly mean remote sensing reflectance for time ranging from July, 2002- July 2014 at the global scale. The results indicate that the high Kd(λ) and Kpar values are usually found around the coastal zones in the high latitude regions, while low Kd(λ) and Kpar values are usually found in the open oceans around the low-latitude regions. These results could improve our knowledge about the light field under waters at either the global or basin scales, and be potentially used into general circulation models to estimate the heat flux between atmosphere and ocean.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助眼睛大莆采纳,获得10
刚刚
1秒前
bsf123完成签到,获得积分10
2秒前
wanci应助huhuhuuh采纳,获得10
3秒前
完美世界应助zhanzhi采纳,获得10
4秒前
6秒前
6秒前
77发布了新的文献求助10
6秒前
CLMY完成签到,获得积分10
10秒前
康康星完成签到,获得积分10
11秒前
11秒前
孤独靖柏发布了新的文献求助10
12秒前
谦让的含海完成签到,获得积分10
12秒前
77完成签到,获得积分20
15秒前
zhanzhi发布了新的文献求助10
16秒前
23秒前
27秒前
30秒前
852应助chenpaul1983采纳,获得10
31秒前
34秒前
huhuhuuh发布了新的文献求助10
34秒前
35秒前
35秒前
yar应助高高高采纳,获得10
36秒前
橙果果发布了新的文献求助20
37秒前
DQY发布了新的文献求助10
39秒前
阳光青文发布了新的文献求助10
40秒前
酷波er应助兴奋大马喽采纳,获得10
42秒前
材1完成签到 ,获得积分10
43秒前
Wy21完成签到 ,获得积分10
44秒前
46秒前
47秒前
王德发3号完成签到,获得积分20
48秒前
慕青应助无情的宛儿采纳,获得10
50秒前
yu5546发布了新的文献求助10
52秒前
三笠完成签到,获得积分10
52秒前
tao_blue发布了新的文献求助30
52秒前
王德发3号关注了科研通微信公众号
53秒前
55秒前
yu5546完成签到,获得积分10
57秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Ultra-Wide Bandgap Semiconductor Materials 600
Psychology Applied to Teaching 14th Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4089999
求助须知:如何正确求助?哪些是违规求助? 3628676
关于积分的说明 11504789
捐赠科研通 3340979
什么是DOI,文献DOI怎么找? 1836546
邀请新用户注册赠送积分活动 904494
科研通“疑难数据库(出版商)”最低求助积分说明 822350