指数增长
统计物理学
高斯分布
马尔可夫链
指数函数
应用数学
马尔可夫过程
高斯过程
随机微分方程
数学
计算机科学
物理
统计
数学分析
量子力学
作者
S. Primak,V. Lyandres,Valeri Kontorovich
出处
期刊:Physical review
日期:2001-05-21
卷期号:63 (6)
被引量:21
标识
DOI:10.1103/physreve.63.061103
摘要
We consider three different methods of generating non-Gaussian Markov processes with given probability density functions and exponential correlation functions. All models are based on stochastic differential equations. A number of analytically treatable examples are considered. The results obtained can be used in different areas such as telecommunications and neurobiology.
科研通智能强力驱动
Strongly Powered by AbleSci AI