Effect of Fouling Conditions and Cake Layer Structure on the Ultrasonic Cleaning of Ceramic Membranes

化学 结垢 粒子(生态学) 离子强度 化学工程 膜污染 粒径 陶瓷膜 超声波传感器 图层(电子) 离子键合 水溶液 离子 有机化学 生物化学 物理化学 海洋学 工程类 声学 物理 地质学
作者
Mikko Lamminen,Harold W. Walker,Linda K. Weavers
出处
期刊:Separation Science and Technology [Informa]
卷期号:41 (16): 3569-3584 被引量:30
标识
DOI:10.1080/01496390600997641
摘要

Abstract Homogeneous alumina membranes fouled by polystyrene latex particles at different pH values and ionic strengths were subjected to ultrasonic cleaning. Cleaning was more effective at high and low pH than at neutral pH. At low pH values, less repulsive particle‐particle interactions resulted in the removal of millimeter‐scale aggregates and highly effective cleaning. At near‐neutral pH, stronger repulsive particle‐particle interactions caused detachment to occur as individual particles from the cake layer rather than as flocs, which was a slightly less effective cleaning mechanism. Ultrasonic cleaning of cake layers formed at high ionic strength (>0.3 M KCl) was less effective than cleaning at lower ionic strength (<0.3 M KCl). High ionic strength caused particles to coagulate in solution and deposit as flocs on the membrane surface forming a highly permeable fouling layer. This fouling layer was resistant to ultrasound at the sub‐optimal cleaning conditions used in this study, perhaps due to particle attachment occurring within a primary energy minimum. Membrane cleaning experiments performed with particles of varying size showed that particle size was less important than the surface potential of the particles. For a given mass, particles that possessed the largest surface potential formed the thickest fouling layer, irrespective of particle size, and showed the greatest improvement in flux with ultrasonic cleaning. These results demonstrate that solution conditions influence ultrasonic cleaning of membranes primarily by modifying particle‐particle and particle‐membrane interactions as well as cake layer structure, rather than by impacting the extent or magnitude of cavitation events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lilili应助hhh采纳,获得10
刚刚
Aten完成签到,获得积分10
刚刚
2秒前
载十七完成签到,获得积分10
3秒前
情怀应助ZZ采纳,获得10
3秒前
浮游应助pluto_采纳,获得10
4秒前
4秒前
嘿嘿完成签到,获得积分20
4秒前
hyw010724完成签到,获得积分10
4秒前
辉尝不错发布了新的文献求助10
4秒前
5秒前
600完成签到 ,获得积分10
5秒前
文艺的访云完成签到,获得积分10
5秒前
无私的宛秋完成签到 ,获得积分10
5秒前
8秒前
CatC完成签到,获得积分10
10秒前
有点儿微胖完成签到,获得积分10
11秒前
CodeCraft应助凉小远采纳,获得10
11秒前
圈圈完成签到,获得积分10
12秒前
12秒前
14秒前
16秒前
bb发布了新的文献求助30
17秒前
XGYJY发布了新的文献求助10
17秒前
18秒前
Zhaoyuemeng完成签到 ,获得积分10
19秒前
20秒前
21秒前
21秒前
陈伟杰完成签到,获得积分10
21秒前
现实的鹏飞完成签到,获得积分20
21秒前
22秒前
swq完成签到,获得积分10
23秒前
渣渣发布了新的文献求助30
25秒前
cc完成签到,获得积分10
27秒前
浅忆晨曦发布了新的文献求助10
27秒前
黄响响完成签到,获得积分10
28秒前
传奇3应助Ashley采纳,获得10
28秒前
hkym应助hml123采纳,获得10
30秒前
难过水蜜桃完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289499
求助须知:如何正确求助?哪些是违规求助? 4441106
关于积分的说明 13826460
捐赠科研通 4323436
什么是DOI,文献DOI怎么找? 2373207
邀请新用户注册赠送积分活动 1368606
关于科研通互助平台的介绍 1332493