Predicting Adoption Probabilities in Social Networks

操作化 计算机科学 最大化 社交网络(社会语言学) 贝叶斯概率 计量经济学 人工智能 心理学 经济 社会心理学 社会化媒体 认识论 万维网 哲学
作者
Fang Xiao,Paul Jen‐Hwa Hu,Zhepeng Li,Weiyu Tsai
出处
期刊:Information Systems Research [Institute for Operations Research and the Management Sciences]
卷期号:24 (1): 128-145 被引量:126
标识
DOI:10.1287/isre.1120.0461
摘要

In a social network, adoption probability refers to the probability that a social entity will adopt a product, service, or opinion in the foreseeable future. Such probabilities are central to fundamental issues in social network analysis, including the influence maximization problem. In practice, adoption probabilities have significant implications for applications ranging from social network-based target marketing to political campaigns, yet predicting adoption probabilities has not received sufficient research attention. Building on relevant social network theories, we identify and operationalize key factors that affect adoption decisions: social influence, structural equivalence, entity similarity, and confounding factors. We then develop the locally weighted expectation-maximization method for Naïve Bayesian learning to predict adoption probabilities on the basis of these factors. The principal challenge addressed in this study is how to predict adoption probabilities in the presence of confounding factors that are generally unobserved. Using data from two large-scale social networks, we demonstrate the effectiveness of the proposed method. The empirical results also suggest that cascade methods primarily using social influence to predict adoption probabilities offer limited predictive power and that confounding factors are critical to adoption probability predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气冰珍发布了新的文献求助10
1秒前
大模型应助健忘的板凳采纳,获得10
2秒前
4秒前
领导范儿应助沉默的芒果采纳,获得10
4秒前
浮生发布了新的文献求助10
4秒前
蜗牛完成签到,获得积分10
5秒前
在水一方应助帅气冰珍采纳,获得10
5秒前
英姑应助帅帅中带点小坏采纳,获得10
6秒前
6秒前
乐乐应助bingsu108采纳,获得10
6秒前
Ava应助cumtxzs采纳,获得10
7秒前
远山笑你完成签到 ,获得积分10
8秒前
lianmeiliu发布了新的文献求助10
9秒前
9秒前
11秒前
adi完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
小W完成签到 ,获得积分10
18秒前
19秒前
20秒前
lqqqq发布了新的文献求助10
22秒前
23秒前
23秒前
bububusbu完成签到,获得积分10
25秒前
25秒前
26秒前
Hello应助谁家那小谁采纳,获得10
27秒前
啊哒吸哇完成签到,获得积分10
27秒前
黄青青完成签到,获得积分10
28秒前
最爱吃的柠檬酸完成签到,获得积分10
33秒前
赘婿应助刘杰青采纳,获得10
34秒前
35秒前
36秒前
37秒前
bobo完成签到,获得积分10
38秒前
浦老四完成签到,获得积分10
39秒前
39秒前
共享精神应助obaica采纳,获得10
39秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842878
求助须知:如何正确求助?哪些是违规求助? 3384881
关于积分的说明 10537922
捐赠科研通 3105474
什么是DOI,文献DOI怎么找? 1710326
邀请新用户注册赠送积分活动 823582
科研通“疑难数据库(出版商)”最低求助积分说明 774149