表观遗传学
计算生物学
生物
表型
癌症
范围(计算机科学)
系统生物学
基因组
生物信息学
遗传学
计算机科学
基因
程序设计语言
作者
Nathan E. Lewis,Alyaa M. Abdel‐Haleem
标识
DOI:10.3389/fphys.2013.00237
摘要
The importance of metabolism in cancer is becoming increasingly apparent with the identification of metabolic enzyme mutations and the growing awareness of the influence of metabolism on signaling, epigenetic markers, and transcription. However, the complexity of these processes has challenged our ability to make sense of the metabolic changes in cancer. Fortunately, constraint-based modeling, a systems biology approach, now enables one to study the entirety of cancer metabolism and simulate basic phenotypes. With the newness of this field, there has been a rapid evolution of both the scope of these models and their applications. Here we review the various constraint-based models built for cancer metabolism and how their predictions are shedding new light on basic cancer phenotypes, elucidating pathway differences between tumors, and dicovering putative anti-cancer targets. As the field continues to evolve, the scope of these genome-scale cancer models must expand beyond central metabolism to address questions related to the diverse processes contributing to tumor development and metastasis.
科研通智能强力驱动
Strongly Powered by AbleSci AI