Online Remaining Useful Life Prediction of Milling Cutters Based on Multisource Data and Feature Learning

保险丝(电气) 计算机科学 离群值 特征(语言学) 人工智能 数据挖掘 特征提取 机器学习 数据建模 统计的 支持向量机 模式识别(心理学) 工程类 数据库 统计 哲学 电气工程 语言学 数学
作者
Liang Guo,Yaoxiang Yu,Hongli Gao,Tao Feng,Yuekai Liu
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (8): 5199-5208 被引量:37
标识
DOI:10.1109/tii.2021.3118994
摘要

A milling cutter is one of the most important parts of machine tools. Its working status significantly influences the precision of workpiece. Due to the complex wear mechanism, the single sensor may be difficult to acquire the complete degradation information of milling cutters. Therefore, in this article, a feature learning based method is proposed to automatically extract features from multisource data and predict the remaining useful life of cutting tools in real time. First, a statistic-based method is constructed to detect and delete the outliers hidden in the monitoring data. Second, the clean data are input into a multiscale convolutional attention network (MSAN) to learn features and fuse multisource data. At last, the fused data are used to predict the remaining useful life of cutting tools in a regression layer. Compared with traditional tool life prediction methods, the proposed method is able to fuse multisource data through an attention feature learning model to conduct the life prediction of tools. Additionally, the data cleaning and model optimization methods are also proposed to promote engineering practicability. To validate the effectiveness of such method, the life testing experiments on milling cutters are conducted to obtain run-to-failure data. In those experiments, multisensor monitor data are acquired, which are used to conduct validation experiments testing the effectiveness of the proposed method. The results indicate the superiority of the proposed method in remaining useful life prediction milling cutters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Promise发布了新的文献求助20
1秒前
慕青应助奔跑西木采纳,获得10
1秒前
算命的完成签到,获得积分10
2秒前
852应助0000采纳,获得10
3秒前
科研通AI6应助震动的代柔采纳,获得10
3秒前
小池完成签到,获得积分20
4秒前
怡然大楚发布了新的文献求助10
4秒前
5秒前
徐啊徐发布了新的文献求助10
5秒前
zz完成签到,获得积分10
6秒前
LeeSunE发布了新的文献求助10
6秒前
7秒前
8秒前
事在人为完成签到,获得积分10
9秒前
9秒前
10秒前
honphyjiang发布了新的文献求助10
10秒前
爱科研发布了新的文献求助10
13秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
Ma完成签到,获得积分10
16秒前
小池发布了新的文献求助10
16秒前
16秒前
8R60d8应助科研通管家采纳,获得10
16秒前
wanci应助科研通管家采纳,获得10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
8R60d8应助科研通管家采纳,获得80
17秒前
英姑应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
打打应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
打打应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
18秒前
天天快乐应助科研通管家采纳,获得10
18秒前
Orange应助科研通管家采纳,获得10
18秒前
18秒前
Akim应助科研通管家采纳,获得10
18秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 666
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4247981
求助须知:如何正确求助?哪些是违规求助? 3781089
关于积分的说明 11871237
捐赠科研通 3434022
什么是DOI,文献DOI怎么找? 1884739
邀请新用户注册赠送积分活动 936340
科研通“疑难数据库(出版商)”最低求助积分说明 842216