适体
检出限
化学
电化学发光
电化学
组合化学
纳米技术
电极
线性范围
色谱法
分子生物学
材料科学
物理化学
生物
作者
Jie Li,Jun Jiang,Yan Su,Yi Liang,Chunsun Zhang
标识
DOI:10.1016/j.aca.2021.339176
摘要
Traditional detection methods for food-borne pathogens are usually expensive and laborious, so there is an urgent need for an economical, facile and sensitive method. In this work, a novel cloth-based supersandwich electrochemical aptasensor (CSEA) is firstly developed for direct detection of pathogens. Carbon ink- and wax-based screen-printing is used to make cloth-based electrodes and hydrophilic/hydrophobic regions respectively to fabricate the sensing devices. Two well-designed, specific single-stranded DNA sequences arise a cascade hybridization reaction to form the DNA supersandwich (DSS) whose grooves can be inserted by methylene blue (MB), which effectively amplifies the current signal to greatly improve the detection sensitivity. Taking the detection of Salmonella typhimurium (S. typhimurium) as an example, the aptamers bind to S. typhimurium to form the target-aptamers complex, which can simultaneously bind to the capture probe and DSS, resulting in detection of S. typhimurium. Moreover, the addition of tail sequences of aptamer makes the proposed CSEA versatile. Under optimized conditions, the electrochemical signal increases linearly with the logarithm of S. typhimurium concentration over the range from 102 to 108 CFU mL-1, with a limit of detection of 16 CFU mL-1. Additionally, the CSEA efficiently determined the levels of S. typhimurium in milk samples. Experimental results illustrate that the fabricated CSEA is sensitive, specific, reproducible and stable. Moreover, when Ru(bpy)32+ replaces MB, the electrochemiluminescence (ECL) can be performed. Thus, for the proposed sensing strategy, the dual-mode detection of electrochemistry and ECL is easily realized.
科研通智能强力驱动
Strongly Powered by AbleSci AI