Bi-Modal Transfer Learning for Classifying Breast Cancers via Combined B-Mode and Ultrasound Strain Imaging

计算机科学 超声波 声学 拉伤 情态动词 生物医学工程 超声成像 物理 医学 复合材料 材料科学 内科学
作者
Sampa Misra,Seungwan Jeon,Ravi Managuli,Ben Seiyon Lee,Gyuwon Kim,Chiho Yoon,Seung‐Chul Lee,R. Graham Barr,Chulhong Kim
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:69 (1): 222-232 被引量:41
标识
DOI:10.1109/tuffc.2021.3119251
摘要

Although accurate detection of breast cancer still poses significant challenges, deep learning (DL) can support more accurate image interpretation. In this study, we develop a highly robust DL model based on combined B-mode ultrasound (B-mode) and strain elastography ultrasound (SE) images for classifying benign and malignant breast tumors. This study retrospectively included 85 patients, including 42 with benign lesions and 43 with malignancies, all confirmed by biopsy. Two deep neural network models, AlexNet and ResNet, were separately trained on combined 205 B-mode and 205 SE images (80% for training and 20% for validation) from 67 patients with benign and malignant lesions. These two models were then configured to work as an ensemble using both image-wise and layer-wise and tested on a dataset of 56 images from the remaining 18 patients. The ensemble model captures the diverse features present in the B-mode and SE images and also combines semantic features from AlexNet and ResNet models to classify the benign from the malignant tumors. The experimental results demonstrate that the accuracy of the proposed ensemble model is 90%, which is better than the individual models and the model trained using B-mode or SE images alone. Moreover, some patients that were misclassified by the traditional methods were correctly classified by the proposed ensemble method. The proposed ensemble DL model will enable radiologists to achieve superior detection efficiency owing to enhance classification accuracy for breast cancers in ultrasound (US) images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉淀完成签到 ,获得积分10
2秒前
华仔应助celine采纳,获得10
6秒前
yefeng完成签到,获得积分10
6秒前
冯梦梦完成签到 ,获得积分10
12秒前
Xpaper完成签到,获得积分10
18秒前
科研通AI5应助科研通管家采纳,获得30
20秒前
鹿璐发布了新的文献求助10
20秒前
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
cavendipeng完成签到,获得积分10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
爆米花应助科研通管家采纳,获得30
20秒前
打打应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
20秒前
地学韦丰吉司长完成签到,获得积分10
22秒前
Bizibili完成签到,获得积分10
24秒前
完美世界应助婷婷大侠采纳,获得10
24秒前
重要的哈密瓜完成签到 ,获得积分10
24秒前
坦率雁卉完成签到,获得积分10
24秒前
Ahha完成签到 ,获得积分10
25秒前
车宇完成签到 ,获得积分10
26秒前
李健应助Orchid采纳,获得10
30秒前
小兔子完成签到,获得积分10
32秒前
Lorain完成签到,获得积分20
32秒前
岂有此李完成签到,获得积分10
37秒前
绿波电龙完成签到,获得积分10
39秒前
可爱的香菇完成签到 ,获得积分10
39秒前
41秒前
xiaoxiao完成签到,获得积分10
41秒前
选课完成签到,获得积分10
41秒前
安静依琴完成签到,获得积分10
42秒前
婷婷大侠发布了新的文献求助10
48秒前
唐禹嘉完成签到 ,获得积分10
49秒前
吃的完成签到,获得积分10
49秒前
帕金森完成签到,获得积分10
50秒前
53秒前
8R60d8应助kiwi采纳,获得10
53秒前
鹿璐完成签到,获得积分10
53秒前
54秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801092
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329787
捐赠科研通 3063102
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726