Computationally guided high-throughput design of self-assembling drug nanoparticles

吞吐量 药品 纳米技术 材料科学 纳米颗粒 计算机科学 医学 电信 精神科 无线
作者
Daniel Reker,Yulia Rybakova,Ameya R. Kirtane,Ruonan Cao,Jee Won Yang,Natsuda Navamajiti,Apolonia Gardner,Rosanna M. Zhang,Tina Esfandiary,Johanna L’Heureux,Thomas von Erlach,Elena M. Smekalova,Dominique Leboeuf,Kaitlyn Hess,Aaron Lopes,Jaimie Rogner,Joy Collins,Siddartha Tamang,Keiko Ishida,P. Chamberlain
出处
期刊:Nature Nanotechnology [Nature Portfolio]
卷期号:16 (6): 725-733 被引量:113
标识
DOI:10.1038/s41565-021-00870-y
摘要

Nanoformulations of therapeutic drugs are transforming our ability to effectively deliver and treat a myriad of conditions. Often, however, they are complex to produce and exhibit low drug loading, except for nanoparticles formed via co-assembly of drugs and small molecular dyes, which display drug-loading capacities of up to 95%. There is currently no understanding of which of the millions of small-molecule combinations can result in the formation of these nanoparticles. Here we report the integration of machine learning with high-throughput experimentation to enable the rapid and large-scale identification of such nanoformulations. We identified 100 self-assembling drug nanoparticles from 2.1 million pairings, each including one of 788 candidate drugs and one of 2,686 approved excipients. We further characterized two nanoparticles, sorafenib–glycyrrhizin and terbinafine–taurocholic acid both ex vivo and in vivo. We anticipate that our platform can accelerate the development of safer and more efficacious nanoformulations with high drug-loading capacities for a wide range of therapeutics. Self-assembly of small drugs with organic dyes represents a facile route to synthesize nanoparticles with high drug-loading capability. Here the authors combine a machine learning approach with high-throughput experimental validation to identify which combinations of drugs and excipient lead to successful nanoparticle formation and characterize the therapeutic efficacy of two of them in vitro and in animal models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
11发布了新的文献求助10
3秒前
hanlin完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
科研通AI5应助明亮的初雪采纳,获得30
5秒前
小巧雪碧发布了新的文献求助10
6秒前
SMG发布了新的文献求助10
6秒前
打打应助玉米采纳,获得10
7秒前
英俊的铭应助南风采纳,获得10
8秒前
正直涔雨发布了新的文献求助10
8秒前
SSS发布了新的文献求助10
9秒前
9秒前
11秒前
11秒前
逃避学习完成签到,获得积分10
13秒前
Azhou完成签到,获得积分10
13秒前
天天快乐应助时尚浩轩采纳,获得10
14秒前
15秒前
liangmh应助优秀乐松采纳,获得10
15秒前
米糊发布了新的文献求助10
17秒前
17秒前
JM发布了新的文献求助10
18秒前
sc30完成签到 ,获得积分10
18秒前
小边牧发布了新的文献求助10
20秒前
20秒前
思源应助qingzx采纳,获得10
20秒前
20秒前
21秒前
22秒前
23秒前
米糊完成签到,获得积分10
24秒前
嗨害害发布了新的文献求助10
24秒前
24秒前
QL发布了新的文献求助10
25秒前
动漫大师发布了新的文献求助10
25秒前
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795026
求助须知:如何正确求助?哪些是违规求助? 3339955
关于积分的说明 10298247
捐赠科研通 3056550
什么是DOI,文献DOI怎么找? 1677052
邀请新用户注册赠送积分活动 805118
科研通“疑难数据库(出版商)”最低求助积分说明 762333