A new data-driven robust optimization approach to multi-item newsboy problems

报童模式 计算机科学 数学优化 稳健优化 平滑的 盈利能力指数 灵敏度(控制系统) 最优化问题 算法 数学 法学 经济 工程类 供应链 计算机视觉 电子工程 政治学 财务
作者
Ying Kou,Zhong Wan
出处
期刊:Journal of Industrial and Management Optimization [American Institute of Mathematical Sciences]
卷期号:19 (1): 197-197 被引量:10
标识
DOI:10.3934/jimo.2021180
摘要

<p style='text-indent:20px;'>A newsboy problem is a typical stochastic inventory management problem and has extensive applications in the fields of operational research, management sciences and marketing sciences. One of the challenges underlying such problems is to handle the uncertainty of demands. In the existing results, it is often to assume that the demand distribution is given to facilitate solution of the problems. In this paper, a novel data-driven robust optimization model for solving multi-item newsboy problems is proposed by combining the absolute robust optimization with a data-driven uncertainty set, and the latter is leveraged to address the uncertainty of demands. For the single-item situation, a closed-form solution is obtained and influences of parameters on the optimal solutions are analyzed. Owing to complexity of the multi-item situation, a uniform smoothing function is leveraged to smooth the proposed model. Then, an algorithm, called a modified Frank-Wolfe feasible direction algorithm, is developed to solve a series of smooth subproblems. Numerical simulation demonstrates that the proposed model in this paper can reduce over-conservation of robust optimization methods and is more robust than other similar well-established methods in the literature. By numerical simulation and sensitivity analysis, it is concluded that: (1) The proposed method can provide more stable optimal order policy and profits than the existing ones; (2) For a product with a higher unit purchase price, the optimal order quantities are more sensitive to its change; (3) In view of profitability, the newsboy should not to be too risk-averse.</p>

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好吗好的发布了新的文献求助10
1秒前
1秒前
2秒前
飞机炸弹发布了新的文献求助10
2秒前
3秒前
稀罕你完成签到,获得积分10
4秒前
传奇3应助啊懂采纳,获得10
4秒前
小羊发布了新的文献求助10
6秒前
6秒前
莫我肯顾发布了新的文献求助10
8秒前
8秒前
weimu发布了新的文献求助10
8秒前
majx发布了新的文献求助10
9秒前
9秒前
TTT发布了新的文献求助20
10秒前
xu给悬铃木的求助进行了留言
10秒前
aiid完成签到,获得积分10
10秒前
上官若男应助Genius采纳,获得10
10秒前
可爱的函函应助Genius采纳,获得10
10秒前
领导范儿应助Genius采纳,获得10
11秒前
FashionBoy应助Genius采纳,获得10
11秒前
华仔应助Genius采纳,获得10
11秒前
carly发布了新的文献求助10
11秒前
飞机炸弹完成签到,获得积分10
12秒前
科研通AI6应助无辜丹翠采纳,获得10
13秒前
核桃发布了新的文献求助10
14秒前
15秒前
17秒前
17秒前
17秒前
18秒前
安静溪流完成签到,获得积分10
18秒前
18秒前
18秒前
wxh发布了新的文献求助20
18秒前
19秒前
19秒前
我是老大应助dong采纳,获得10
20秒前
量子星尘发布了新的文献求助10
20秒前
新八发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626037
求助须知:如何正确求助?哪些是违规求助? 4711790
关于积分的说明 14956974
捐赠科研通 4780061
什么是DOI,文献DOI怎么找? 2554016
邀请新用户注册赠送积分活动 1515892
关于科研通互助平台的介绍 1476120