已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An artificial neural network model based on DNA damage response genes to predict outcomes of lower-grade glioma patients

异柠檬酸脱氢酶 胶质瘤 一致性 IDH1 肿瘤科 突变 内科学 接收机工作特性 医学 基因 生物 癌症研究 遗传学 生物化学
作者
Jian Chen,Xiaojun Qian,Yifu He,Xinghua Han,Yueyin Pan
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (6) 被引量:4
标识
DOI:10.1093/bib/bbab190
摘要

Although the prognosis of lower-grade glioma (LGG) patients is better than others, outcomes are highly heterogeneous. Isocitrate dehydrogenase (IDH) mutation and 1p/19q codeletion status can identify patient subsets with different prognosis. However, in the era of precision medicine, there is still a lack of biomarkers that can accurately predict the individual prognosis of each patient. In this study, we found that most DNA damage response (DDR) genes were aberrantly expressed in LGG patients and were associated with their prognosis. Consequently, we developed an artificial neural network (ANN) model based on DDR genes to predict outcomes of LGG glioma patients. Then, we validated the predictive ability in an independent external dataset and found that the concordance indexes and area under time-dependent receiver operating characteristic curves of the predict index (PI) calculated based on the model were superior to those of the mutation markers. Subgroup analyses demonstrated that the model could accurately identify patients with the same mutation status but different prognosis. Moreover, the model can also identify patients with favorable prognostic mutation status but poor prognosis or vice versa. Finally, we also found that the PI was associated with the mutation status and with the altered immune microenvironment. These results demonstrated that the ANN model can accurately predict outcomes of LGG patients and will contribute to individualized therapies. In addition, a web-based application program for the model was developed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
羊毛毛衣完成签到,获得积分10
4秒前
甘牡娟完成签到,获得积分10
6秒前
llllissa完成签到,获得积分10
8秒前
任性大米完成签到 ,获得积分10
9秒前
崔洪瑞发布了新的文献求助10
9秒前
大眼的平松完成签到,获得积分10
11秒前
yangyajie发布了新的文献求助10
14秒前
14秒前
JamesPei应助11采纳,获得10
14秒前
派小星完成签到,获得积分10
15秒前
直率芮完成签到 ,获得积分10
15秒前
都会完成签到 ,获得积分10
18秒前
xuhaoo0125发布了新的文献求助10
20秒前
23秒前
碧蓝可仁完成签到 ,获得积分10
26秒前
完美梨愁完成签到 ,获得积分10
29秒前
歪歪yyyyc完成签到,获得积分10
29秒前
qqqqqqq77完成签到 ,获得积分10
30秒前
37秒前
科研通AI5应助yangyajie采纳,获得10
38秒前
39秒前
Milo完成签到,获得积分10
43秒前
Kevin完成签到,获得积分10
43秒前
44秒前
沉默寻凝完成签到,获得积分10
46秒前
47秒前
学术通zzz发布了新的文献求助10
49秒前
酷酷的笔记本应助遗忘采纳,获得20
50秒前
53秒前
几米完成签到 ,获得积分10
53秒前
54秒前
qi完成签到 ,获得积分10
56秒前
禾斗石开发布了新的文献求助10
59秒前
沉默白猫完成签到 ,获得积分10
1分钟前
不辣的完成签到 ,获得积分10
1分钟前
tgd完成签到,获得积分10
1分钟前
ffff完成签到 ,获得积分10
1分钟前
狂野的含烟完成签到 ,获得积分10
1分钟前
Swear完成签到 ,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815663
求助须知:如何正确求助?哪些是违规求助? 3359277
关于积分的说明 10401860
捐赠科研通 3077021
什么是DOI,文献DOI怎么找? 1690059
邀请新用户注册赠送积分活动 813650
科研通“疑难数据库(出版商)”最低求助积分说明 767694